
 

 

 

 

 

 

 

 

 

 

Introducing TreeNet® Gradient Boosting Machine 

 

This guide describes the TreeNet® product and illustrates some practical 
examples of its basic usage and approach. 
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TreeNet® Introduction 

Stochastic gradient boosting, commonly referred to as “gradient boosting”, is a revolutionary advance in 
machine learning technology. Gradient Boosting was developed by Stanford Statistics Professor Jerome 
Friedman in 2001. TreeNet® software implements the gradient boosting algorithm and was originally written 
by Dr. Friedman himself, whose code and proprietary implementation details are exclusively licensed to 
Salford Systems. 

Gradient Boosting Algorithm 

1. For each record in the learn sample, supply an initial value specific to the chosen loss function 

2. Sample s percent of the records in the learn sample randomly 

3. Compute the generalized residual for the records in the sample from Step 2 

4. For the records sampled in Step 2, fit a CART tree with a maximum of J terminal nodes to the 

generalized residuals computed in Step 3 

5. Use the CART tree in Step 3 to update the model (the updates depend on the loss function) but 

shrink the update by the learning rate 𝜶 

Repeat Steps 2-4 M times 

The final model is the following: 𝑻𝒓𝒆𝒆𝑵𝒆𝒕 =   𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 +  𝜶𝐶𝐴𝑅𝑇1 +  𝜶𝐶𝐴𝑅𝑇2 + ⋯ + 𝜶𝐶𝐴𝑅𝑇𝑴 

 

The following is a picture of one of the main model setup menus in TreeNet software. Be sure to set the 

Analysis Engine to TreeNet Gradient Boosting Machine and then navigate to the TreeNet Tab.  

 

Each of the M iterations corresponds to fitting a CART tree to the generalized residuals so the number of 

iterations = number of trees built; and thus, we use the terminology “Number of trees to build.” 
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Basic Principles of TreeNet® 

TreeNet is a revolutionary advance in data mining technology developed by Jerome Friedman, one of the 

world's outstanding data mining researchers. TreeNet offers exceptional accuracy, blazing speed, and a 

high degree of fault tolerance for dirty and incomplete data. It can handle both classification and regression 

problems and is remarkably effective in traditional numeric data mining and text mining. 

A TreeNet model normally consists of several hundred to several thousand small trees, each typically 

containing about six terminal nodes. Each tree contributes a small portion to the overall model and the final 

model prediction is the sum of all the individual tree contributions. You can think of the TreeNet model as a 

black box that delivers exceptionally accurate models. TreeNet offers detailed self-testing to document its 

reliability on your own data. In many ways, the TreeNet model is not that mysterious, although it is 

undeniably complex. You do not need to concern yourself with that complexity because all results, 

performance measures, and explanatory graphs can be understood by anyone familiar with basic data 

mining principles. However, if you want to understand the details of TreeNet model construction, refer to 

the following outline 

The model is similar in spirit to a long series expansion, such as a Fourier or Taylor series, which is a sum 

of factors that becomes progressively more accurate as the expansion continues. The expansion can be 

written as: 

 

In the equation above, each Ti can be considered a small tree. You should read this as a weighted sum of 

terms, each of which is obtained from the appropriate terminal node of a small tree.  

In this example, the first few terms from a regression model based on a well-known data set: the Boston 

Housing data extracted from the 1970 US Census. This data set is usually used to build models that predict 

the median value of houses in a neighborhood based on quality-of-life variables, such as crime rate, school 

quality, and socioeconomic status of the neighborhood, and a few core housing descriptors, such as typical 

house age and size. 

 

The model above begins with an estimate of mean home value (in 1970) of $22,533. We can use this as a 

baseline from which adjustments will be made to reflect characteristics of the housing and the 

neighborhood. In the first term, the model states that the mean value would be adjusted upwards by $13,541 

for larger homes, and adjusted upwards again by $2,607 for neighborhoods with good socioeconomic status 

indicators. In practice, the adjustments are usually much smaller than shown in this regression example 

and hundreds of adjustments may be needed. The final model is a collection of weighted and summed 

trees.  

Although this example is a regression, the same scheme is used for classification problems. For binary 

classification problems, a yes or no response is determined by whether the sign of the predicted outcome 

is positive or negative. For multi-class problems, a score is developed separately for each class via class-

specific expansions and the scores are converted into a set of probabilities of class membership. 

( ) ( ) ( ) ( )XTXTXTFXF MM ++++= ...22110
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The Boston housing regression example above uses the smallest possible two-node tree in each stage. 

More complicated models tracking complex interactions are possible with three or more nodes at each 

stage. The TreeNet default uses a six-node tree, but the optimal tree size for any specific modeling task 

can only be determined through trial and error. We have worked on problems that are handled perfectly 

well with two-node trees, and one of our award-winning data mining models used nine-node trees. 

Fortunately, TreeNet models run very quickly, so it is easy to experiment with a few different-sized trees to 

determine which will work best for your problem. 

Typical Questions and Answers about TreeNet 

What are the advantages of TreeNet? 

In our experience TreeNet is the closest tool we have ever encountered to a fully-automated statistician. 

TreeNet can deal with substantial data quality issues, decide how a model should be constructed, select 

variables, detect interactions, address missing values, ignore suspicious data values, prevent the model 

from being dominated by just a few ultra-powerful variables, and resist any overfitting. 

Typically, the result is a model that is far more accurate than any model built by data-mining tools and at 

least as accurate than any model built by experts working for weeks or months. Of course, there is no 

substitute for a good understanding of the subject matter and problems being addressed and a reasonable 

familiarity with the data is always required for reliable results. However, given that, TreeNet can give you a 

substantial advantage in reaching high-performance models quickly.  

Below is a summary of TreeNet’s key features:  

Automatic selection from thousands of candidate predictors. 

• No prior variable selection or data reduction is required. 

Ability to handle data without preprocessing. 

• Data do not need to be rescaled, transformed, or modified in any way. 

• Resistance to outliers in predictors or the target variable. 

• Automatic handling of missing values. 

• General robustness to dirty and partially inaccurate data. 

High Speed: 

• Trees are grown quickly; small trees are grown extraordinarily quickly. 

• TreeNet is able to focus on the data that are not easily predictable as the model evolves. As 
additional trees are grown, fewer and fewer data need to be processed. 

• TreeNet is frequently able to focus much of its training on just 20% of the available data (all 
accomplished automatically without user intervention). 

Resistance to Overtraining. 

• When working with large data bases even models with 2,000 trees show little evidence of 
overtraining. 

TreeNet’s robustness extends to the most serious of all data errors: when the target variable itself is 

sometimes incorrect, for example, when a “yes” is incorrectly recorded as a “no,” or vice versa. In the 
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machine learning world, such data are said to be contaminated with erroneous target labels. For example, 

in medicine, there is some risk that patients labeled as healthy are in fact ill and vice versa. This type of 

data error can be challenging for conventional data mining methods and can be catastrophic for 

conventional forms of “boosting.” In contrast, TreeNet is generally immune to such errors as it dynamically 

rejects training data points too much at variance with the existing model 

In addition, TreeNet adds the advantage of a degree of accuracy usually not attainable by a single model 

or by ensembles such as bagging or conventional boosting. Independent real-world tests in text mining, 

fraud detection, and credit worthiness have shown TreeNet to be dramatically more accurate on test data 

than other competing methods. 

Of course, no one method can be best for all problems in all contexts. Typically, if TreeNet is not well suited 

for a problem, it will yield accuracies on par with a single CART® tree. 

What are the advantages of TreeNet over a neural net? 

Several of our most avid TreeNet users are former neural network advocates who have discovered how 

much faster and easier it is to get their modeling done with TreeNet while sacrificing nothing in the area of 

accuracy. In contrast to neural networks, TreeNet is not overly sensitive to data errors and needs no time-

consuming data preparation, preprocessing, or imputation of missing values. TreeNet is especially adept 

at dealing with errors in the target variable, a type of data error that could be catastrophic for a neural net. 

TreeNet is resistant to overtraining and can be 10 to 100 times faster than a neural net. Finally, TreeNet is 

not troubled by hundreds or thousands of predictors. 

What is the technology underlying TreeNet and how does it differ from boosting? 

TreeNet is a proprietary methodology developed in 1997 by Stanford's Jerome Friedman, a co-author of 

CART®, the author of MARS® and PRIM, and the inventor of Projection Pursuit regression, the methodology 

known as “stochastic gradient boosting”; the trade secrets of the technology are embedded exclusively in 

TreeNet. Others may eventually try to develop technology based on the public descriptions offered by 

Professor Friedman, but hundreds of technical details remain exclusive to Salford Systems.  

What is the TreeNet track record? 

TreeNet technology has been tested in a broad range of industrial and research settings and has 

demonstrated considerable benefits. In tests in which TreeNet was pitted against expert modeling teams 

using a variety of standard data mining tools, TreeNet was able to deliver results within a few hours 

comparable to or better than results that required months of hands-on development by expert data mining 

teams. 

TreeNet was designated “Most Accurate” in the KDD Cup 2004 data mining competition (sponsored by the 

Association for Computing Machinery’s data mining SIG). TreeNet also won first place in all four competitive 

categories in the 2002 Duke University/NCR Teradata Churn modeling competition and numerous other 

competitions since.  

How does TreeNet fit into the Salford Systems data mining solution? 

The Salford Systems data mining solution rests on two groups of technologies: CART, MARS for accurate 

easy-to-understand models and TreeNet and Random Forests for ultra-high performing, but potentially very 

complex, models interpreted via supporting graphical displays. Even in circumstances where interpretability 

and transparency are mandatory and a model must be expressible in the form of rules, TreeNet can serve 

a useful function by benchmarking the maximum achievable accuracy against which interpretable models 

can be compared. 
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TreeNet Settings 

Model Tab 

 

Analysis Engine 
Specify the type of model to build. To build a TreeNet model, click the dropdown box and select “TreeNet 

Gradient Boosting Machine.” 

Target Type 
A target type of “Regression” means that the target variable is quantitative, whereas a target type of 

“Classification” the target variable is a character variable or a numbered target variable where each 

number corresponds to a class. 

Target 
 MODEL <depvar name> [= <predictor_list>] 

Specify the dependent variable. In SPM, the dependent variable is referred to as the “target variable.”  

Predictor 
 KEEP <predictor_list> 

Specify the predictor variables to be considered in the model by clicking the desired checkboxes 
corresponding to the variable names listed on the left. To select all variables as predictors, click the 
“Predictor” label (top of the purple rectangle above) and then click the Select Predictors checkbox to 
check all the checkboxes simultaneously. To select a particular subset of variables as predictors, highlight 
the desired group of variables by clicking and dragging and then click the Select Predictors checkbox. 
In SPM we call the list of predictor variables in the model the “KEEP list.” 
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Categorical 
 CATEGORICAL <predictor_list> 

Specify the variables to be treated as categorical in the model by clicking the desired checkboxes 
corresponding to the variable names listed on the left. To select all variables as categorical, click the 
“Categorical” label (top of the green rectangle above) and then click the Select Cat. Checkbox to check 
all the checkboxes simultaneously. To select a particular subset of variables as categorical, highlight the 
desired group of variables by clicking and dragging and then click the Select Cat. checkbox. 

Weight 
 WEIGHT <weight_variable_name>  

Specify the variable to use as a case weight. The case weight values must be numeric and may take on 

fractional, but not negative, values. 

Cancel Button 
Exit the model setup without saving the current model settings.  

Continue Button 
Exit the model setup while saving the current model settings.  

Start Button 
 TREENET GO  

Build the TreeNet model. 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 12 

 

Sort Control 
Sort the variable names list on the left by their alphabetical or file order by clicking the arrow and 

selecting the desired option. The default order is alphabetical and in the picture above it is “File Order.” 

Filter 
 KEEP <_CHARACTER_|_NUMERIC_> 

You can construct the model using only categorical variables by clicking “Character” or only numeric 

variables by clicking “Numeric.”  

Set Focus Class… Button 
 FOCUS <variable1> = <class1> [<variable2>=<class2>…]  

Appropriate for a Target type of “Classification/Logistic Binary” only. This allows you to set the event of 

interest which is referred to as the “Focus Class” in SPM. For instance, to predict if someone has a 

disease, then your target variable could have two values: 0 if the patient does not have the disease or 1 if 

the patient does have the disease. If you want the predicted probabilities to be the probability that a 

patient has a disease, then set the focus class to 1. See the Focus Class: Specifying the Event of Interest 

section for information about the focus class setup. 

Save Grove… Button 
Results in SPM are saved in a special file called a grove. A grove file stores the model itself as well as 

useful summary information, SPM commands, and more. Click this button to specify a save location for 

the model and the model will be saved immediately after the modeling run has been completed.  
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Categorical Tab 

  

 

In the Categorical Tab (yellow rectangle above), you will see values for the “Number of Levels” for each 
categorical variable (blue rectangle above) if you compute summary statistics first; otherwise, you will 
see “Unknown.” Click the summary statistics shortcut button (light blue rectangle below) to access the 
summary statistics option 

 

Click the Set Class Names button in the picture above to set labels for categorical variables 

Set Class Names 

After you click the Set Class Names button in the picture above, you will see the Categorical Variable 
Class Names menu that is shown on the right in the picture above: 

1. “File Value” is the original value of the variable in the dataset whereas “Display Value” is the 
label that you want to add in place of the original value in the dataset.  

a. Type both the file values and display values as you want them to appear (purple 
rectangle above).    

2. Click the Add button to add the label for the variable Z1 and you will see the labels added 
to the desired variable in the left pane (green rectangle above).  

3. Click the Done button when you are finished adding labels.    
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Testing Tab 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No independent testing – exploratory model  
 PARTITION NONE 

In this mode, no external evaluation is performed. The entire dataset is used for training, and therefore, the 
final results will include only training data. The best model is almost always the largest.  

Fraction of Cases Selected at Random (FAST)  
 PARTITION TEST = .2, DRAW = FAST 

This results in a model built using approximately 20% of the data for testing. Final results are reported for 
both the training and testing data, and the percentage can be modified. 

Fraction of Cases Selected at Random (EXACT)  
 PARTITION TEST = .2, DRAW = EXACT 

This results in a model built using exactly 20% (or very close) of the data for testing. Note that there is a 
small time cost if the EXACT method is used. Final results are reported for both the training and testing 
data, and the percentage can be modified.  

Test Sample Contained in a Separate File 
 PARTITION FILE = “C:\Users\...” 

This results in a model built using the data in the specified final as the test dataset. Final results are reported 
for both train and test data. 
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V-Fold Cross-Validation  
 PARTITION CROSS = <V> 

Usually used with small datasets when one cannot afford to reserve some data for testing. The entire 
dataset is used for learning purposes, and then is partitioned into ten bins. At each fold in 10-fold CV, 
nine bins are used as a training set and the remaining bin is used as a test set. After all 10 folds are 
completed, the test results from each fold are averaged to get a fair test estimate of the all-data model 
performance. 

Variable determines CV bins 
 PARTITION CROSS = VARIABLE_NAME 

Same as the above option, but the user has full control over bin creation by introducing a special variable 
with integer values 1 through K to mark the bins where K is the desired number of bins. You can opt for a 
different number of folds. Click the radio button and specify the variable by clicking the variable name 
(green rectangle above). 

Variable Separates Learn, Test, (Holdout): 
 PARTITION CROSS = VARIABLE_NAME 

This is the most flexible mode. Click the radio button and specify the variable by clicking the desired variable 
name (green rectangle above). When the value for the variable is 0, the corresponding observation is 
used in the learning data; when the value is 1, the observation is used in the testing data; otherwise 
observation will not be included in any partition and assumed to be reserved for the holdout sample (i.e. 
any value other than 0 or 1; the holdout data is data that the model has never seen and can be used as a 
final assessment of model performance) 
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✓ Use the indicator variable mode when you want complete control over which part of the data is used 
for testing. You may also create multiple indicator variables in the same data set to experiment with 
different random seeds or learn/test ratios. 

✓ Use “Cross Validation” when the supply of data is limited.  

 Use extreme care when creating your own CV bins. Each bin should be of the same size and balanced 
on the target variable. 

 10-fold cross-validation runs are, on average, 10 times slower than using a test sample. For small data 
sets, you may not notice the difference but for large data sets using cross validation will substantially 
increase your run times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 17 

Select Cases Tab 
 SELECT <var$> <relation> '<string$>' 

The “Select Cases” tab allows you to specify up to ten selection criteria for building a model based on a 

subset of cases. A selection criterion can be specified in terms of any variable appearing in the data set 

(i.e. the variable may or may not be involved in the model), and is constructed as follows: 

 

 

1. Click the desired variable name (red rectangle above) which will then appear in the Variable 

textbox. 

2. Click the desired operator button (i.e.=,=>, > =<, <, or <>). 

a. Note: <> means “not equal”. 

3. Enter the desired value for the condition (green rectangle above). 

4. Click the Add to List button to add the condition. 

 

The condition appears in the right pane (pink rectangle above). To delete a condition, click the condition 

in the right pane (pink rectangle above), and then click “Delete From List” (black rectangle above). 

Here our filter is defined by three conditions:  

 

1. X2 < 2 

2. Z1$ <> “ONE” (Note: <> means “not equal”) 

3. X3 => -.5 (Note: => means “greater than or equal to”)  

 

If the model were built with these three conditions, then the model is built only with observations that 

satisfy all three of the conditions.  
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TreeNet Tab 

Regression Loss Functions 

  

 TREENET LOSS=LAD|LS|HUBER|RF|POISSON|GAMMA|NEGBIN|COX|AUTO|TWEEDIE 

Users have the following regression loss function options. Note: 𝐹𝑖 is the prediction for the ith case 𝑌𝑖. 

1. LAD: Least Absolute Deviation loss function used for quantitative targets 

2. LS: Least Squares loss function used for quantitative targets 

3. QUANTILE: model a specific quantile. Example: a quantile value of .5 (specified by the user in the 

GUI) means that you are modeling the conditional median (this is identical to the LAD loss function).  

4. HUBER: Huber-M Loss Function that is a hybrid of the least squares loss function and the least 

absolute deviation loss function  

5. RF: build a Random Forest using the TreeNet engine. This allows you to see partial dependency 

plots for the Random Forest model and build RuleLearner and ISLE models for Random Forests.  

6. POISSON: Poisson loss function designed for the regression modeling of integer COUNT data, 

typically for small integers such as 0, 1, 2, 3, 4, ….  

7. GAMMA: designed for the regression modeling of strictly positive target variables 

8. NEGBIN: Negative Binomial loss function used for counted targets 0, 1, 2, 3, … 

9. COX: designed for the regression modeling of non-negative survival time with potentially a 

CENSOR variable that indicates whether the current record has been censored: 

COX CENSOR Variable: the censor variable should be coded in the following format: 1 

for non-censored and 0 if the case was censored.  
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10. TWEEDIE: Tweedie distribution loss function used for non-negative targets. Here we model the 

conditional mean under the assumption of constant dispersion, optimizes quasi-deviance using the 

following option to set the P-parameter POWER = <p> where POWER is in the range [1.0,5.0].  

 Special Cases of the POWER = <p> parameter 

o P = 1 corresponds to the overly dispersed Poisson regression 

o P = 2 corresponds to the Gamma distribution 

o P = 3 corresponds to the inverse Gaussian distribution 

 Target Variable Constraints (the “target variable” is also called the dependent or response 

variable)  

o For power in [1.0, 2.0], the response may have exact zeroes.  

o For power in [2.0, 5.0], the response must be strictly positive.  

11. One Tree: builds a TreeNet model having a single tree and presents the single tree in a CART-like 

way, providing the tree topology as well as pruning and splitting details.  
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Classification Loss Functions 

Setting the Target Type to be “Classification” in the Model Tab section changes the types of loss 

functions and they are show below.  

 

Classification/Logistic Binary: binary (two classes) or multinomial (more than two classes) classification. 

SPM will automatically choose between binary or multinomial classification.  

One Tree: builds a TreeNet model having a single tree and presents the single tree in a CART-like way, 

providing the tree topology as well as pruning and splitting details. This combines the natural 

interpretability of CART trees with the extreme speed, loss functions and sampling options of TreeNet. 

Differential Lift modeling- builds a differential lift model using the TreeNet engine. A binary response 

variable and a binary 0/1 treatment variable are required.  

Random Forests- build a Random Forest using the TreeNet engine. This allows you to see partial 

dependency plots for the Random Forest model and build RuleLearner and ISLE models for Random 

Forests. 
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Criterion Determining Number of Tree Optimal for Regression Model 

  

Criterion Determining Number of Trees Optimal for Regression Model 

 TREENET OPTIMAL= MSE|MAD|MAPE 

When the Target Type is set to “Regression” you still have three ways to evaluate model performance: 

mean squared error (MSE), mean absolute deviation (MAD), and mean absolute percentage error (MAPE). 

The sequence of trees generated by TreeNet during the model-building phase is determined by control 

parameters such as the number of nodes and the learn rate. The model selection criterion determines the 

size of the model extracted from this sequence.  
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Criterion Determining Number of Tree Optimal for Logistic Model 

 

Criterion Determining Number of Trees Optimal for Logistic Model Model 

 TREENET OPTIMAL= AVGLL|LIFT|ROC|MISCLASS 

 TREENET LTHRESHOLD = .1 

 TREENET CTHRESHOLD = .5 

When the Target Type is set to “Classification” you have four ways to evaluate model performance: negative 

average log likelihood (Cross Entropy), area under the ROC curve (ROC area), lift (Lift in given proportion 

of), and the misclassification rate (Classification Accuracy; note that when this option is selected, the user 

can specify the probability cutoff which is labeled as “Assign class if probability exceeds:”).  
 

The sequence of trees generated by TreeNet during the model-building phase is determined by control 

parameters such as the number of nodes and the learn rate. The model selection criterion determines the 

size of the model extracted from this sequence.  
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Learn Rate & Subsample Fraction 

 
 

Overfitting Protection: Learn Rate  
 TREENET LEARNRATE=<x|AUTO> 

 
Controls the rate at which the model is updated after each training stage (see step 4 in the Gradient 
Boosting Algorithm section). This is also referred to as “shrinkage” in Friedman’s original articles. The 
default is AUTO, and the allowable range is 0.0001 to 1.0 inclusive. AUTO is calculated as follows: 

AUTO value = max(0.01, 0.1*min(1, nl/10000)) where nl = number of LEARN records. 

 This default uses very slow learn rates for small data sets and uses 0.10 for all data sets with more 
than 10,000 records. “Slow learn rates” are learn rates that have a small value. They are referred to as 
“slow” because smaller learning rates require more trees for the model to converge which results in 
longer runtimes (i.e. set the value for the “Number of trees to build” setting to be larger if you set the 
learning rate to be smaller). We recommend that you experiment with different learn rates, especially 
rates slower than the default for larger data sets. Values much smaller than .01 significantly slow down 
the learning process and might be reserved for overnight runs. 

 High learn rates and especially values close to 1.0 typically result in overfitted models with poor 
performance. 

Overfitting Protection: Subsample Fraction 
 TREENET SUBSAMPLE=<x> 

A new random draw from the learn sample is conducted at each cycle. This setting controls the proportion 
of data used for learning at each cycle (the sampling is conducted without replacement; see step 2 in the 
Gradient Boosting Algorithm section). This not only speeds up the modeling time, but also guards against 
overfitting and explains occasional minor local increases in the learn error curve as a TreeNet run 
progresses. The default is 0.5 (half of the learn sample is used at each modeling iteration), and the allowable 
range is 0.01 to 1.0 inclusive. 

✓ It may be necessary to use values greater than the .5 default with small training files. Unlike the learn 
rate, using a sampling rate of 1.0 is not necessarily catastrophic, but values less than 1.0 are still 
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strongly recommended. You may need to experiment to determine the best rate. Sampling rates that 
are too small can hurt accuracy substantially while yielding no benefits other than speed.  

Predictors per node & Predictors per tree 

 

Model Randomization: Predictors per node (RF Style predictor selection) 

 TREENET PREDS=<n> 

In the original TreeNet approach, all predictors would be tried as potential splitters in each node as a tree 

is being built. This is identical in spirit to the conventional CART process. However, in developing the 

Random Forests algorithm Leo Breiman demonstrated that additional benefits may be acquired if you use 

a randomly selected subset of predictors as potential splitters during the tree construction process. A new 

subset of predictors is randomly selected at each node and then used in searching for the optimal split 

value. This further reduces the mutual correlation structure of the ensemble and improves its predictive 

power. 

The RF Style predictor control incorporates this approach into the TreeNet algorithm. Now you can set the 

number of predictors to be sampled at each node during TreeNet model building and explore its impact on 

the resulting performance. 

✓ Breiman suggested the square root of the total number of predictors as a good starting point for this 
control. 

✓ By default, this control is set to 0 which allows all predictors to be sampled, thus, restoring the original 
TreeNet approach. 

Model Randomization: Predictors Per Tree 
 TREENET TPREDS=<n> 

 

Specifies the number of predictors that are randomly selected as candidate splitters for each tree as 
opposed to each node (see the “Predictors Per Node” entry directly above). A set of randomly selected 
variables is chosen and all splits in that tree are made using only those variables that are randomly selected. 
For the next tree a different set of randomly selected variables is chosen and this process continues. 
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Vary tree sizes randomly & Sample with Replacement 

 

 

Model Randomization: Vary tree sizes randomly (As Poisson) 

 TREENET RNODES=<YES|NO> 

Remember that we control the size of each tree (this is the number of terminal nodes in a tree; see Step 3 

in Gradient Boosting Algorithm section). Jerome Friedman recently suggested that fixing the number of 

nodes for each tree in the TreeNet process may be too rigid in some contexts. For example, the 

RuleLearner® methodology aimed at extracting useful rule-sets from a TreeNet model may benefit from 

trees having varying size as the TreeNet model develops. 

When the box is checked, TreeNet will make a Poisson draw with the mean value taken from the “Maximum 

nodes per tree” control from the TreeNet tab (purple rectangle above; in the picture above we would take a 

random number from a Poisson distribution with a mean of 6). The resulting value will be used as the actual 

requested size of the next tree to be built. Thus, as the TreeNet process develops, each tree’s size will vary 

in terms of the number of terminal nodes. 

Model Randomization: Sample With Replacement   
 TREENET BSAMPLE=<YES|NO> 

 

Remember that each tree is constructed using a random sample (see Step 2 in the Gradient Boosting 
Algorithm section). Clicking this checkbox means that a bootstrap sample (i.e. a sample with replacement) 
is taken at each iteration. The default value is NO (i.e. unchecked which means that the sampling is 
conducted without replacement).   
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Number of Trees & Maximum nodes per tree 

 

Limits: Number of Trees to Build   
 TREENET TREES=<n> 

Specifies the number of trees (= number of iterations) in the model. The default is 200. This is the “M” that 

is specified in the Gradient Boosting Algorithm section.  

✓ You should expect to grow hundreds or even thousands of trees to get a maximum performance model. 

✓ The default setting for 200 trees is designed to facilitate interactive model selection and provide very 
rapid feedback. Once you have a good feel for your data and how you want to tackle your modeling 
effort, be prepared to allow for 500, 1000, 2000 or more trees.  

✓ Be sure to use a slow learn rate when growing many trees. 

✓ If the “optimal” model contains close to the maximum number of trees allowed (e.g., more than ¾ of the 
maximum), consider growing more trees. 

Limits: Maximum Nodes Per Tree  
 TREENET NODES=<n> 

Specifies the maximum number of terminal nodes in each tree. The default is 6. This is the “J” that is 
specified in Step 3 in the Gradient Boosting Algorithm section. As this number increases, TreeNet’s ability 
to model interactions increases (more than two nodes are required to detect interactions and the default 
six-node tree appears to do an excellent job)  

✓ You can grow TreeNet models made up of two-node trees. These tiny trees (also known as “stumps”) 
can be surprisingly powerful and are well worth experimenting with. 

✓ Two-node trees contain only a single variable and a single split. Because only one variable is ever 
involved in a model update, the models cannot detect interactions and thus can be described as main-
effects additive models. 

 In the presence of missing values in the learn sample, TreeNet may choose to build more nodes in a 
tree to accommodate missing value pre-splits. 
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 TreeNet may also choose to build smaller trees when the larger trees can’t be constructed due to 
sample size or other limitations. 

 Nothing prevents you from requesting trees with quite a few nodes (e.g., more than 12) but doing so is 
likely to undermine TreeNet’s slow-learning strategy. Large trees can also place unnecessary burdens 
on your computer’s memory resources. 
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Max Tree Depth & Terminal Node Minimum 

 

Limits: Maximum Tree Depth  
 TREENET DEPTH=<n> 

Specifies the maximum depth for each tree. Note that the 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑁𝑜𝑑𝑒𝑠 ≥ 2𝐷𝑒𝑝𝑡ℎ . The default 
value is 100,000. Note that the setting for the maximum number of terminal nodes (discussed directly 
above) interferes with this setting: as an example, the default setting for the maximum number of terminal 
nodes is 6, so with the default settings the tree cannot go beyond 6 terminal nodes. Consider the following 
CART tree with a maximum depth of 6 (Note: there are 11 terminal nodes so even if the depth were set to 
6 this tree would not be possible because the maximum number of terminal nodes is 11).  

 

Limits: Terminal Node Minimum: Cases  
 TREENET MINCHILD=<n> 

Controls how small individual terminal nodes are allowed to be when the Terminal node Minimum control 

is set to “Cases.” In our example, the value setting of 10 (which is the default value) indicates that only 

terminal nodes that have more than 10 observations can be in the model. Setting this control to larger 

values may result to smoother models; however, past a certain point, the model may start experiencing the 

loss of accuracy. The best values for this control are usually determined experimentally. 

✓ When working with small training samples it may be vital to lower this setting to five or even three. 

 

Limits: Terminal Node Minimum: Hessian  
 TREENET MHESS=<v> 

When the Terminal node Minimum control is set to “Hessian,” this specifies the minimum value for the 
hessian in each terminal node for NEWTON models (also known as RGBOOST models). The default 
value is 1.0 and works in conjunction with MINCHILD (see Terminal Node Minimum: Cases directly 
above). 
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Influence trimming speed-up 

 

Total Influence Fraction 

 TREENET INFLUENCE=<x> 

Classification only. Influence trimming is a form of data selection designed to focus the TreeNet learning 

process on the most important data records. It is the mechanism by which suspicious data are ignored. 

There are two types of data records that are dropped due to the influence trimming: those that are far from 

the decision boundary and classified correctly and those that are far from the decision boundary and 

misclassified. The former have very small logistic residuals, contribute next to nothing to the model 

refinements during subsequent iterations and therefore can be safely ignored. The latter have very large 

logistic residuals, which could be an indication of being outliers or otherwise problematic records with the 

potential to severely distort model evolution and thus needed to be ignored too. 

✓ If you have no concerns about the quality of your data you might consider turning this feature off by 
setting the Total Influence Fraction to 0. 

✓ It is always worth experimenting with a few values of this factor to see what works best. We recommend 
settings of 0, 0.1, and even 0.2. 

The Influence trimming factor can vary between 0.0 and 0.2, with larger values generally having larger 

effects. 

 

Default Buttons 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 30 

 

Defaults buttons 

The group of buttons in the lower right corner of the TreeNet tab allows you to specify new defaults for any 
subsequent TreeNet run. The defaults are saved in the TreeNet initialization file and persist from session 
to session. 

Std. Defaults – press this button to restore the original “factory” settings. 

Save Defaults – press this button to save the current settings as the new defaults. 

Recall Defaults – press this button to recall previously-saved defaults. 

For example, you might decide that your typical TreeNet run should use a 0.01 learn rate, 1000 trees, two 

nodes (to force additive models), and the least squares loss criterion. Just set these parameters and press 

Save Defaults. In future sessions, TreeNet automatically assumes the new settings unless you manually 

override them. 
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Save Grove… Button 

 

Save Grove… Button  

To save the model after the model has been built, click the Save Grove… button and specify a save location. 
A grove is a special file that stores the model. Groves have a variety of uses: you can view model results 
without having to rebuild the model (especially useful when the dataset is large), you can send groves to 
other SPM users so they can open your model in their copy of SPM, and, perhaps most importantly, models 
that are saved to grove files can be used to generate predictions for datasets (see the Score section for 
more information).  
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Plots & Options Tab 
The Plots & Options Tab allows you to set options for creating one and two-variable partial dependency 

plots (PDPs) that are generated automatically as a part of the TreeNet modeling run (Note: see the 

Create Plots… section for details on how to create PDPs after a TreeNet modeling run). PDPs are 

generated only for variables with a positive variable importance score.  

 TREENET PLOTS= <YES|NO>,<YES|NO>,<YES|NO>,<YES|NO> 

 
 
The settings above accomplish the following: Requests 30 one variable partial dependency plots that 

are constructed using 500 randomly selected observations), and requests two variable partial 

dependency plots involving the top 5 variables that are each constructed using 5000 randomly selected 

observations. Note: the number of two variable dependency plots created is “5 choose 2” and that the 

largest number of two variable dependency plots that can be created is set to 500. The total number of 

Plots Estimated (black square above) is 40 = 𝟑𝟎 + (
𝟓
2

) 

 

Warning: Number of PDPs 
The user specifies the number of variables involved in creating the partial dependency plots (PDPs) for 

the one variable PDPs (see 30 above) as well as the number of variables involved in creating the two 

variable PDPs (see 5 in the picture above). In general, the number of Plots Estimated (black square 

above) is computed using the following formula (refer to the colors in the picture above):  

𝑷𝒍𝒐𝒕𝒔 𝑬𝒔𝒊𝒎𝒂𝒕𝒆𝒅 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝒇𝒐𝒓 𝑼𝒏𝒊𝒗𝒂𝒓𝒊𝒂𝒕𝒆 𝑷𝑫𝑷𝒔 +  (
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝑭𝒐𝒓 𝑩𝒊𝒗𝒂𝒓𝒊𝒂𝒕𝒆 𝑷𝑫𝑷𝒔

2
) 

The number of plots estimated can become very large when the number of predictor variables is large 

and the “All” buttons are selected (they are currently not selected; click the button to select). The “All” 

option for the one variable plots requests that a PDP is generated for every variable with a nonzero 

variable importance score in the model. The “All” option for the two variable plots requests that a PDP 

is generated for every combination of variables with a positive variable importance score. Note that you 
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can define an upper limit (in this case the upper limit is 500) for the number of two variable PDPs 

generated.  

Other Plotting Options 

 

Center Plotted Values 

 TREENET CENTER = <YES|NO> 

Controls whether the partial dependency plot is centered. The default is YES.  

Save Plot Data 

 TREENET PF = “C:\Users\Name\plot_data.xml” 

Specifies an XML-like text file in which TreeNet should store the data upon which the error rate profile, 
pair plots, and single plots are based. 

N Bins for ROC/Lift 

 TREENET GB = <n> 

Specifies the number of bins for ROC and Lift computations. The default value is 10. 

Random Number Seed 

 TREENET SEED = <n> 

Specifies the seed for the next TreeNet operation. The default is 987654321. 

For each performance criterion (ROC, Lift, R2, MAD, etc.) save detailed info for how many top ranked models 

 TREENET FR = <n> 

Controls how many "good models" are identified to generate complete results including confusion 
matrices, gains, ROC, and threshold tables. The default is 1, which means the best single model for each 
available optimality criterion is tracked (i.e., 4 for binary classification models and 2 for multinomial 
classification and regression models). If FR is set to 100 and the model is a binary classification model 
(with four optimality criteria), then TreeNet will track the best 100 models equally across the four 
optimality criteria (about 25 models per criterion), accounting for models which are considered good by 
several criteria. A high value for FR results in a potentially lengthy "reconciliation" after the tree building is 
done and increases memory requirements of TreeNet as well as the size of the grove file, but it makes full 
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results available for a greater number of models that are of potential interest to the analyst. We 
recommend keeping this setting well below 10 for routine modeling.  
Variable containing Start Values for Model Continuation 

 

Variable Containing Start Values for Model Continuation 

 TREENET INIT = <Variable_Name> 

Specifies a variable that contains “start values” for the model. This can be a constant or a record specific 
adjustment. This is very useful in hybrid modeling approaches where TreeNet model is developed as a 
follow up model to previously constructed model. For example, a linear regression model (captures main 
linear trends) may be followed by TreeNet to explore departures from linearity and also interactions.  
 
A typical use for the INIT variable is to start a new model from the end-point of a previous TreeNet model. 
The INIT variable could be derived from a SCORE operation in SPM or predictions saved during the model 
building (i.e. this is the variable called “RESPONSE” when you write the predictions to a file).  
 
INIT values could also be derived from other models like logistic regression, but the logit score (i.e. the log 
odds) should be multiplied by 0.5 to conform to the TreeNet scale (gradient boosted trees for binary 
classification operate on the one-half log-odds scale). INIT values for a logistic loss model must be in the 
range [-10.0, 10.0]. 
 
INIT values for the following losses: POISSON, GAMMA, NEGBIN, TWEEDIE, COX must be in the range 
[-30.0, 30.0] to reflect the logarithmic scale of the raw internal TN response.  
 
To reset the INIT option so that no start values are used, use INIT = 0.  
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Monotonicity 

 

Monotonicity 

 MONOTONE UP = <VAR1>, <VAR2>, … 

 MONOTONE DOWN = <VAR1>, <VAR2>, … 

 
Constrains the direction of the impact of a predictor in a TreeNet gradient boosting model. For instance, 
you can constrain a variable to have a monotonically increasing or decreasing relationship with the target 
variable. You can verify this effect of this constraint by examining the partial dependency plot for the 
specified variable(s) (these plots will be monotonically increasing or decreasing).  
 
To set the monotonicity control, click the checkbox next to Monotonicity, and then specify the desired 
variables to be “Monotone Up” or “Monotone Down” by clicking the appropriate checkbox (red rectangle 
above). If a variable is not specified to be “Monotone Up” or “Monotone Down,” then that variable will not 
be constrained.   
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TN Advanced Tab 
 

Subsample Separately by Target Class 

 

 

Use Advanced Sampling Methods 

 TREENET SUB1 = <p1>, SUB0 = <p2>  
By default, a subsampling fraction of .5 is used for all records in the dataset (see the “Subsampling Fraction” 
on the “TreeNet” tab for more information). You can specify separate sampling rates for the target classes 
in binary classification models only. This is useful if one class is rarer than the other; you may want to 
subsample 100% of the rare class to ensure representation in the model.  
 
In the Use Advanced Sampling methods section in the picture above we set the sampling rate of the 
positive cases to be .7 whereas the sampling rate for the negative cases to be .10. The picture above 
corresponds to the following commands: TREENET SUB1 = .7, SUB0 = .1 
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Controls to Reduce Required RAM (slower)  

 
 

Use Sparse Storage for Variables 

 TREENET SPARSE = <CONT|CAT|BOTH>  
Specify sparse storage for continuous variables (CONT), categorical variables (CAT), or both continuous 
and categorical variables (BOTH). 

Low Memory Mode 

 TREENET LOWMEMORY = <YES|NO> 
Requests 33% smaller memory footprint during model building, which may result in longer modeling times.  

No Continuous Variables Indexing 

 TREENET INDEX = <YES|NO> 
Controls whether a copy of the continuous variable index is enabled or disabled. The default is YES. When 
an index is used computations are at their fastest but total memory consumption is 3X (or 2X when 
LOWMEMORY = YES). Note that categorical predictors never use indexing. 
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Influence Trimming Limited to Focus Class and/or Correctly Classified 
 

 

Influence Trimming to Focus Class Misclassification and/or Correctly Classified 

 TREENET TRIMGOOD=<YES|NO>, TRIMBAD=<YES|NO>, TRIMPOS=<YES|NO>, 

TRIMNEG=<YES|NO>, TRIMAFTER=<N> 

The following options provide more specific controls over when, where, and what to trim: 

TRIMPOS turns on influence trimming for the FOCUS class records (the default is YES, applies to 

LOSS=LOGIT only). 

TRIMNEG turns on influence trimming for the OTHER class records (the default is YES, applies to 

LOSS=LOGIT only). 

TRIMGOOD turns on influence trimming for CORRECTLY classified records (the default is YES). 

TRIMBAD turns on influence trimming for INCORRECTLY classified records (the default YES). 

TRIMAFTER turns on influence trimming after <N> trees are grown. 

The default setting is that both the “Focus” class and the “Other” class are trimmed as well as both the 

“Correct” and “Misclassified”.  
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Model Variance-Dispersion Component Separately 

 

 

Variance-Dispersion Component 

 TN SIGMA=<YES|NO> 

Activates modeling of the variance component and the mean component for the key regression losses 

Least Squares (LS), Least Absolute Deviation (LAD), Huber-M, and the two-parameter losses Gamma and 

Negative Binomial. SIGMA=YES models both mean/location and variance/dispersion of the response 

surface, potentially doubling modeling time, but usually producing smoother surfaces. 
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TN Interactions Tab 

Interaction Control Language (ICL) 
Interaction reporting and enforcing is one of the most recent additions to the TreeNet engine. Most controls 
and reports are available through command line with some features supported at the GUI level. The 
reference for the interaction statistics to be described is “Predictive Learning via Rule Ensembles” by 
Friedman and Popescu (2005). The interaction measures discussed below are sometimes referred to as 
“H-squared statistics.”  
 
The main machinery behind interaction reporting is based on the comparison between a genuine bivariate 
plot (where variables are allowed to interact) and an additive combination of the two corresponding 
univariate plots. By gauging the difference between the two response surfaces you can measure the 
strength of interaction effect for the given pair of variables. The entire process is automated to quickly 
identify variables and pairs of variables most suspected to have strong interactions. 
 
The core idea behind interaction enforcing is that variables can only interact within individual trees. 
Therefore, providing fine controls over how individual variables can enter into a tree is the key to allowing 
or disallowing different interactions. For example, requesting 2-node trees (one split per tree) effectively 
disables all interactions because any TreeNet model is always additive across trees. This approach can be 
further expanded to multiple node trees by controlling which variables are allowed to jointly appear within 
individual branches. 
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SPM offers several straightforward ways to control interactions during the model-building process. In the 

TN Interactions tab of the Model Setup window one can choose: 

All variables interact 

Click to let all variables interact with each other (i.e. the model is not restricted in any way). This is the 
default setting.  

No variables interact (Additive) 

Click to ensure that none of the variables interact. In this case, each tree is built using only one variable. 
Note that this contrasts with a boosted stumps model: a boosted stump model is a gradient boosted tree 
model where each of the trees have only one split (i.e. only one variable is used so there are no interactions 
between variables). Additive trees use only one variable, but, in contrast to boosted stumps, can have more 
than one split in each of the trees.  
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Selected variables interact 
 ICL ALLOW <variable list> /degree 

The user-selected group of variables can interact among themselves up to the specified degree.  
 
In the following example, we only allowed up to a 3-way interaction between Z1$, Z2$, X1, and X4.  
  

 
 
This means that in the TreeNet model we can have the following interactions only (the other variables are 
forced to enter the model additively): 

1. Z1$ and Z2$ 
2. Z1$ and X1 
3. Z1$ and X4 
4. Z2$ and X1 
5. Z2$ and X4 
6. X1 and X4 
7. Z1$, Z2$, and X1 
8. Z1$, Z2$, and X4 
9. Z1$, X1, and X4 
10. Z2$, X1, X4 

The corresponding commands associated with the settings in the picture above are the following:  

ICL ALLOW = Z1$, Z2$, X1, X4 / 3 

The command line offers greater control over the specific structure of interactions that are allowed or 

disallowed in a TreeNet model. Here we provide brief highlights on the subject, the complete description of 

the command listed below can be found in the Command Reference guide. 

 ICL ADDITIVE = <variable list> 
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This command has the highest priority and prevents any and all interactions in the TreeNet among the 

variables listed on the command. In the presence of any other ICL command (see below), the remaining 

variables are allowed to interact as usual. 

 ICL ALLOW <variable list> /degree 

This command allows the listed variables to interact only among themselves, provided that they do not 

occur on the ADDITIVE list. Multiple ALLOW commands with possibly overlapping lists of variables are 

admissible. The variables are allowed to interact only if they occur on one or more ALLOW lists and do not 

occur on the ADDITIVE list, 

✓ The best practice is either to define an ADDITIVE list or defining a collection of ALLOW lists but never 
both. The former case is equivalent to a pair of complementing ADDITIVE and ALLOW statements, 
while the latter is equivalent to having an implied complementing ADDITIVE command. 

 ICL DISALLOW <variable list> /degree 

This command only works “inside” of an existing ALLOW command. It further refines additional 

combinations of variables that are specifically not allowed to interact among themselves, even though they 

are allowed to interact with any other member of the ALLOW group. 

 

TN Interactions Tab: Interaction Inhibition via Penalties 

 

Interaction Inhibition via Penalties  

 ICL PENALTY = <v> 
Imposes a penalty on introducing a new variable into a branch of the tree under construction. If X1 and X2 
are already on a given branch, then the penalty causes TreeNet to continue using these two variables to 
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extend the branch. This penalty is intended to inhibit interactions in general.  The corresponding commands 
in the picture above (red rectangle above) are ICL PENALTY = .53 

 
 
 
Interaction Statistics 

 

General Interaction Strength Reports 

 TREENET INTER = <YES|NO> 
Provides a report concerning the percent of the variance in the predicted response that is accounted for by 
an interaction between a particular variable and any other variable in the model (this is equation 45 in 
Section 8.1 in Predictive Learning via Rule Ensembles by Friedman and Popescu, 2005). 
   

 Generating interaction reports consumes approximately same amount of time as generating all partial 
dependency plots which may be comparable with the model building time and even longer. 

The interaction strength report is titled “TreeNet Interactions” and here we will first look at the “Whole 

Variable Interactions Score” report which is located in the Classic Output Window after running the TreeNet 

model. Y 

Viewing the Whole Variable Interaction Score Report: 

1. After the TreeNet model has finished, click Window > Classic Output 
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This opens Classic Output Window 

 

2. In the Classic Output Window, click the “TreeNet Interactions” link on the left (red rectangle below) 

to see the “Whole Variable Interactions” report (green rectangle below). See below for information 

concerning the interpretation.   
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Whole Variable Interaction Score Report 

 

This table provides the list of all available predictors sorted according to the suspected overall interaction 

strength. The interaction strength is on the % scale, which in this example, indicates that 37.52822% of the 

total variation in the predicted response can be attributed to an interaction of the categorical variable Z2$ 

with any other variable in the model. The same interpretation applies to the remaining variables in the list. 

The report is only approximate and may require further investigation, including trying various interaction 

enforcing strategies described in the section using the Interaction Control Language (ICL). 

Max 2-Way Interactions to report 

 

Max 2-Way Interaction to Report 

 ICL N2WAY = <v> 
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Specifies a limit on the number of two-way interactions to report after the TreeNet model run finishes and 
defaults to 5. A value of 5 means that five 2-way interaction reports will be generated. Each interaction 
report provides an interaction score between the variable of interest and paired with the each of variables 
in the model (i.e. if X1 is the variable of interest, then there will be a variable interaction score for X1 and 
X2, X1 and X3, X1 and X4, X1 and Z1$, and so on; this constitutes 1 of the five two-way interaction reports). 
 

✓ Make sure that “General Interaction Strength Reports” (orange rectangle above) is selected in 
addition to the “Max 2-way interaction to report” option (blue rectangle above) 

 

Viewing the 2-way Interaction Report 

1. After the TreeNet model is finished, click Window > Classic Output 

 

This opens the Classic Output Window. 

2. In the Classic Output Window, click the “TreeNet Interactions” link on the left (red rectangle below) 

and scroll down until you see the “2-way Interaction Stats” report (green rectangle below) 
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Interpreting the 2-way Interaction Report 

Here are the top 2 (of 5) requested interaction reports: 
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• Score Global (on the % scale) shows the contribution of the suspected interacting pair normalized 
to the overall response surface (total variation of the predicted response).  

o A value of zero means that the interaction under consideration has no effect on the overall 
model.  

o Example: 37.08393% of the total variation in the predicted response is accounted for by 
the interaction between Z2$ and Z1$ (see the picture directly above)  

o Reference: this metric is described in the last paragraph in Section 8.1 of “Predictive 
Learning via Rule Ensembles” by Friedman and Popescu. Score Global is equation 44 with 
the denominator of equation 44 replaced by the denominator used in equation 45 in Section 
8.1 in “Predictive Learning via Rule Ensembles” by Friedman and Popescu (2005). 

• Score Local (on the % scale) shows the contribution of the suspected interacting pair of variables 
normalized to the two-variable partial dependency function of the pair of variables under 
consideration (two-variable partial dependency functions are used to generate the two-variable 
partial dependency plots) 

o A value of zero means that there is no interaction between the two variables under 
consideration.  

o Example: 48.75050% of the total variation in the joint marginal distribution of Z1$ and Z2$ 
is accounted for by an interaction between Z1$ and Z2$ (the rest is accounted for by 
additive effects for Z1$ and Z2$ or random noise) 

o Reference: Score Local is equation 44 in Section 8.1 in Predictive Learning via Rule 
Ensembles by Friedman and Popescu, 2005)  

✓ Score1 is always smaller than Score2. 

✓ A small Score1 value combined with large Score2 indicates a strong interaction even though the overall 
contribution of this pair, compared to the remaining variables, is rather insignificant. 
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It is worth reminding that all interaction reports are based on the patterns in which variables appear together 

on the same branch of a tree in the TreeNet model. The reports can be considered as no more than a set 

of hypotheses because apparent interactions may be due to chance factors or, alternatively, may not be 

needed to obtain the best possible mode by changing the overall model composition. You can use this 

report as a starting point to guide the follow up use of the ICL commands (see the next section). One can 

test whether an interaction is "real" by preventing it from occurring in a new TreeNet model. If imposing 

such a restriction does not harm model performance, then the interaction is declared to be "spurious." In 

general, it is best to constrain the models by first restricting the less prominent interactions and gradually 

imposing more and more restrictions. 

 

Top Variable Interaction Pairings by Score Global  

This report sorts the pairs of interactions using their Score Global value in descending order which is 

convenient when the number of variables in the model is large. 

Top Variable Interaction Pairings by Score Local 

This report sorts the pairs of interactions using their Score Local value in descending order which is 

convenient when the number of variables in the model is large. 

 

These reports can be accessed by clicking the desired links below (red rectangle below) and can be seen 

in classic output (green rectangle below for the Score Global sorted report and the blue rectangle below 

for the Score Local report) 
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Pairwise interactions details 

 

Pairwise interactions details 

 TREENET VPAIRS = <YES|NO> 
Requests reports describing pairwise interactions of predictors. In particular, you will see a report with a 
title similar to “Most Common Same-Branch Pairwise Interaction By Occurrence.”  
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Viewing Pairwise Interaction Details 

1. After building the TreeNet model, click Window > Classic Output 

 

This opens the Classic Output Window. 

2. In the Classic Output Window, click the “Most Common Same-Branch Pairwise Interactions by 

Occurrence” link on the left (red rectangle below) and the “Most Common Same-Branch Pairwise 

Interactions” report appears (black rectangle below). 

 

Interpreting Pairwise Interaction Details 
 

1. The variable X1 is used with the variable X1 on the same branch 104 times and the first time 

this occurred was in tree 1. 

 

a. Note that the double star ** denotes a variable being used more than once on the same 

branch. 

 

2. The variable Z1$ (the dollar sign denotes a categorical variable) is used with the variable X1 

are used on the same branch 33 times and the first time this occurred was in tree 4 (i.e. iteration 

4).  
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Class Weights Tab 

 

 CW BALANCE|UNIT|SPECIFY 

The original intent behind the concept of class weights is to allow powerful modeling controls similar to 

PRIORS controls in the CART engine. Internally, TreeNet trees are optimized for speed and efficiency and 

do not directly support the prior probabilities concept. This is where class weights become useful.  

Class weights allow you to specify weights for each member of a class. For example, an observation from 

class 1 could count twice as much as an observation from class 0. Note that this is as if one doubled 

(ignoring some fine differences) the prior probability of class 1. Class weights are distinct from individual 

case or record weights and both types of weights can be used at the same time. 

The following three class weights options for the logistic binary model are available: 

BALANCED - As the name implies, this setting is intended to rebalance unequal class sizes. Automatic 
reweighting ensures that the sum of all weights in each class are equal, eliminating any need for manual 
balancing of classes via record selection or definition of weights. 

✓ This is equivalent to the PRIORS EQUAL setting of CART. 

UNIT - This setting takes the relative sizes of the two classes as given and does not attempt to compensate 
by adjusting weights for the smaller class. This is the default setting and is recommended for the binary 
logistic regression. 

✓ This is equivalent to PRIORS LEARN setting of CART. 

SPECIFY - Lets the user specify class weights. This is the most flexible option. You can set any positive 
values for each class. 

 While class weights can influence how a TreeNet model evolves and how it performs in prediction, 
these weights will not influence any reports involving record or class counts. The class weights are 
“virtual” and are used to influence the model-building process. 
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In most TreeNet runs, we recommend using UNIT class weights. This simplifies reading the output and 

usually produces superior results. 

Penalty Tab 

 

The penalties available in the SPM were introduced by Salford Systems starting in 1997 and represent 

important extensions to machine learning technology. Penalties can be imposed on variables to reflect a 

reluctance to use a variable as a predictor. Of course, the modeler can always exclude a variable; the 

penalty offers an opportunity to permit a variable into the model but only under special circumstances. The 

three categories of penalty are: 

Variable Specific Penalties: Each predictor can be assigned a custom penalty (light blue rectangle 
above).  

 PENALTY <var>=<penalty> [<var2> = <pen2>, <var3> = <pen3>, …] 

Missing Value Penalty: Predictors are penalized to reflect how frequently they are missing. The penalty is 
recalculated for every node in the tree (purple rectangle above) 

 PENALTY /MISSING=1,1 

High Level Categorical Penalty: Categorical predictors with many levels can distort a tree due to their 
explosive splitting power. The HLC penalty levels the playing field. (orange rectangle above) 

 HLC=<hlc_val1>,<hlc_val2> 

A penalty will lower a predictor’s improvement score, thus making it less likely to be chosen as the primary 

splitter. Penalties specific to particular predictors are entered in the left panel next to the predictor name 

and may range from zero to one inclusive. 

Penalties for missing values (for categorical and continuous predictors) and a high number of levels (for 
categorical predictors only) can range from "No Penalty" to "High Penalty" and are normally set via the 
slider on the Penalty tab, as seen in the following illustration. 
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In the screenshot above, we have set both the Missing Values and the HLC penalties to the frequently 
useful values of 1.00 (red rectangle and blue rectangle above, respectively).  

Penalties on Variables 

The penalty specified is the amount by which the variable’s improvement score is reduced before deciding 

on the best splitter in a node. Imposing a 0.10 penalty on a variable will reduce its improvement score by 

10%. You can think of the penalty as a “handicap”: a 0.10 penalty means that the penalized variable must 

be at least 10% better than any other variable to qualify as the splitter. 

✓ Penalties may be placed to reflect how costly it is to acquire data. For example, in database and 
targeted marketing, selected data may be available only by purchase from specialized vendors. By 
penalizing such variables we make it more difficult for such variables to enter the tree, but they will enter 
when they are considerably better than any alternative predictor. 

✓ Predictor-specific penalties have been used effectively in medical diagnosis and triage models. 
Predictors that are “expensive” because they require costly diagnostics, such as CT scans, or that can only 
be obtained after a long wait (say 48 hours for the lab results), or that involve procedures that are unpleasant 
for the patient, can be penalized. If penalizing these variables leads to models that are only slightly less 
predictive, the penalties help physicians to optimize diagnostic procedures. 

 Setting the penalty to 1 is equivalent to effectively removing this predictor from the predictor list. 
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Missing Values Penalty 

In CART, at every node, every predictor competes to be the primary splitter. The predictor with the best 

improvement score becomes one. Variables with no missing values have their improvement scores 

computed using all the data in the node, while variables with missing values have their improvement scores 

calculated using only the subset with complete data. Since it is easier to be a good splitter on a small 

number of records, this tends to give an advantage to variables with missing values. To level the playing 

field, variables can be penalized in proportion to the degree to which they are missing. The proportion 

missing is calculated separately at each node in the tree. For example, a variable with good data for only 

30% of the records in a node would receive only 30% of its calculated improvement score. In contrast, a 

variable with good data for 80% of the records in a node would receive 80% of its improvement score. A 

more complex formula is available for finer control over the missing value penalty using the Advanced 

version of the Penalty tab (click the button in the green rectangle above). 

 

Suppose you want to penalize a variable with 70% missing data very heavily, while barely penalizing a 

variable with only 10% missing data. The Advanced option (click the button in the green rectangle above) 

lets you do this by setting a fractional power on the percent of good data. For example, using the square 

root of the fraction of good data to calculate the improvement factor would give the first variable (with 70% 

missing) a .55 factor and the second variable (with 10% missing) a .95 factor. 

The expression used to scale improvement scores is: 

 

The default settings of a = 1, b = 0 disable the penalty entirely; every variable receives a factor of 1.0. Useful 

penalty settings set a = 1 with b = 1.00, or 0.50. The closer b gets to 0 the smaller the penalty. The fraction 

of the improvement kept for a variable is illustrated in the following table, where "%good" = the fraction of 

observations with non-missing data for the predictor. 
 

 %good b=.75 b=.50 

 ----------------------------- 

  0.9 0.92402108 0.948683298 

  0.8 0.84589701 0.894427191 

  0.7 0.76528558 0.836660027 

  0.6 0.68173162 0.774596669 

  0.5 0.59460355 0.707106781 

  0.4 0.50297337 0.632455532 

  0.3 0.40536004 0.547722558 

  0.2 0.29906975 0.447213595 

  0.1 0.17782794 0.316227766 

 

In the bottom row of this table, we see that if a variable is only good in 10% of the data, it receives 10% 
credit if b=1, 17.78% credit if b=.75, and 31.62% credit if b=.50. If b=0, the variable receives 100% credit 
because we would be ignoring its degree of missingness. 

✓ In most analyses, we find that the overall predictive power of a tree is unaffected by the precise setting 
of the missing value penalty. However, without any missing value penalty you might find heavily missing 

( )bng_not_missiproportionaS =
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variables appearing high up in the tree. The missing value penalty thus helps generate trees that are more 
appealing to decision makers. 

High-Level Categorical (HLC) Penalty 

Categorical predictors present a special challenge to decision trees. Because a 32-level categorical 

predictor can split a data set in over two billion ways, even a totally random variable has a high probability 

of becoming the primary splitter in many nodes. Such spurious splits do not prevent TreeNet from eventually 

detecting the true data structure in large datasets, but they make the process inefficient. First, spurious 

splits add unwanted nodes to a tree, and because they promote the fragmentation of the data into added 

nodes, the reduced sample size as we progress down the tree makes it harder to find the best splits. 

To protect against this possibility, the SPM offers a high-level categorical predictor penalty used to reduce 

the measured splitting power. On the Basic Penalty dialog, this is controlled with a simple slider (this is the 

default view that you see in the picture on the previous page). 

The Advanced Penalty (click the button in the green rectangle above) dialog allows access to the full 

penalty expression. The improvement factor is expressed as:  

 

By default, c = 1 and d = 0; these values disable the penalty. We recommend that the categorical variable 

penalty be set to (c = 1, d = 1), which ensures that a categorical predictor has no inherent advantage over 

a continuous variable with unique values for every record. 

 The missing value and HLC penalties apply uniformly to all variables. You cannot set different HLC or 
missing value penalties to different variables. You choose one setting for each penalty and it applies to 
all variables. 

✓ You can set variable-specific penalties, general missing value, and HLC penalties. Thus, if categorical 
variable Z is also sometimes missing all three penalties could apply to this variable at the same time. 
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Lags Tab: A Brief Introduction 
If you wish to run a time series or panel data (time series cross section) style model, use lagged values of 

variables as predictors.  

Note: if you check any of the variables as predictors then the model will use a variable from the same 

time period as the target (i.e. the “current” time period). If you don’t want variables from the same time 

period as the target variable, then keep all predictor boxes unchecked as shown in the red rectangle 

below.  
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Click the “Lags” tab (yellow rectangle below).  

To add lagged variables to the model, enter the number of periods to lag a variable. The lagged versions 

of the variable are created by SPM automatically and are added to the model. In the cells below for the 

“DIESEL_LA” row a value of 3 means that SPM will create a DIESEL_LA variable that is lagged by 3 

periods, a value of 4 means that SPM will create a DIESEL_LA variables that is lagged by 4 periods, and so 

on.  

 

• The Clear Value button clears the lag value from a desired cell after you click on the cell 

• The Clear All button clears all lag values  

• The Add Column button adds a column if you need to add more lags (the default number of 
columns is 4 and in the above picture there are six columns; the additional two columns were 
created by clicking the Add Column button twice) 

• The Delete Column button removes a column if desired 

• The Fill button in the “Fill the selected column” section adds an entire column of the same lag 
value which prevents you from having to do this manually 
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Automate Tab: A Brief Introduction 
An automate is a procedure that allows a user to perform experiments and build multiple models 

simultaneously. Some automates are general in nature and apply to all SPM modeling engines whereas 

some are specific to individual modeling engines. Some automates are general in nature whereas others 

are specific to particular modeling engines. 

 

Examples of general automates 

1. Automate PARTITION – repeat modeling run with new learn, test, and holdout samples drawn 
from the original dataset 
 

2. Automate BOOTSTRAP – repeat modeling run with new learn samples drawn with replacement 
(advanced testing options included)  
 

3. Automate CVREPEATED – repeat cross validation with different random number seeds 
 

4. Automate SHAVING RFE – drop the least important predictor, rerun, and repeat 
 

TreeNet Specific Automates  

1. Automate INFLUENCE- build multiple TreeNet models, each with a different value for the total 
influence trimming fraction 
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2. Automate LEARNRATE – build multiple TreeNet models, each with a different learn rate (the 
learn rate is the 𝛼 in “Step 4” in the “TreeNet Algorithm” section) 
 

3. Automate NODES – build multiple TreeNet models, each with a different maximum number of 
terminal nodes (the maximum number of terminal nodes is the “J” in “Step 3” in the “TreeNet 
Algorithm section)  
 

4. Automate TNCLASSWEIGHTS- vary class weights between UNIT and BALANCED in N steps for 
binary TreeNet models 
 

5. Automate TNOPTIMIZE – perform a stochastic search for the core TreeNet parameters 
 

6. Automate TNQUANTILE- build multiple TreeNet models, each with a different value for the LAD 
quantile value. 
 

7. Automate TNRGBOOST- this will result in N+1 models being built. A first model will be built to 
determine plausible values for the L0, L1, and L2 parameters and N more models will be built 
using random combinations of those values. Specifying a different RANDOMSEED value allows 
you to repeat the experiment with the same number of models but a different group of 
randomly selected L0, L1, and L2 combinations. 
 

8. Automate TNSUBSAMPLE –build multiple TreeNet models, each with a different subsampling 
fraction (the subsample fraction is the percentage, denoted by s, mentioned in Step 2 in the 
Gradient Boosting Algorithm section) 
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Using an Automate 

To run an automate go to the Automate tab (yellow rectangle below) and double click on the desired 

automate in the left panel so that it appears in the middle panel, specify your desired values if you want 

something different than the default values by double clicking in the “Values” box or the “Set Automate 

Options” button (if it is not grayed out), and then click the “Start”. Click the “Generate Individual Model 

Reports” if you want detailed reports for each model constructed using an automate.   

 

The output from running Automate NODES is the following: 
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The red beam in the chart above (see the black arrow in the picture above pointing to the red beam) 

indicates that the optimal value for the maximum number of terminal nodes is 9 because the TreeNet 

model with a maximum number of terminal nodes value of 9 has the smallest Mean Squared Error value 

on the test sample. You can also click the Show Min MSE button to highlight the row that corresponds 

to the optimal value for the maximum number of terminal nodes. Note that you can choose from four 

measures of model quality: Mean Squared Error (MSE; currently the MSE button is selected), Median 

Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), or R-squared (R-Sq). 

To view detailed information about any of the models, double click the model ID (i.e. double click 

“TreeNet1,” “TreeNet2,” etc.; see the orange arrow pointing to “TreeNet3” in the picture above). 

Double clicking will open up a TreeNet output window similar to this:  

 

You can now view detailed model information as discussed in the two interpretation sections of this 

manual: TreeNet Regression: Viewing and Interpreting Results or Classification/Binary Logistic: Viewing 

and Interpreting Results.   
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Example: Building a Regression Model 
Creating a Sample Example Model Data Set 

A sample data set SAMPLE.CSV is supplied as part of the TreeNet installation. It is located in the Sample 

Data folder. 

The following table lists the major groups of variables in the data set. 

Variable Names Description 

X1, … , X10 Continuous predictors 

Z1$, Z2$ Categorical predictors (character) 

Y1 Continuous target 

Y2 Binary target coded +1 and -1 

Y3 Categorical target with 4 levels: 1, 2, 3, and 4 

W Weight variable 

T 
Learn/Test dummy indicator  
(0 – learn, 1 – test) 

In our first run we will try to predict the continuous target Y1 using the continuous predictors X1–X10 and 

categorical predictors Z1$, Z2$. We chose a regression problem for this first example because regression 

problems are somewhat simpler and produce fewer reports than classification problems. The scatter matrix 

for select continuous variables follows. 

 

The plots suggest only a strong nonlinear relationship between X1 and Y1. It is not clear whether there is 
any relationship between the remaining predictors and the target.  

An attempt to run a stepwise multiple linear regression of Y1 on X1–X10 selects five predictors, X1, X2, X6, 
X8, X9. Unfortunately, this model only has R-squared equal to .0179, making it practically useless. 
Later we will discover that this model fails to pick important predictors and at the same time mistakenly 
selects some irrelevant predictors. 
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✓ Exploiting possible periodic non-linearity in X1 as suggested by the corresponding plot may slightly 
improve the results, but the remaining relationships remain obscure. 

Reading Data In 

To open the input file SAMPLE.CSV: 

Select File>Open>Data File… from the File menu. 

✓ An alternative is to click on the  button in the toolbar 

 

Use the Open Data File dialog window to navigate into the Sample Data folder in the SPM installation 
directory. 

 

Choose Delimited (*.csv,*.dat,*.txt) in the Files of type: selection box. 

Highlight SAMPLE.CSV. 

Click the Open button to load the data set into TreeNet. 

 Make sure that the data set is not currently being accessed by another application. If it is, the data 
loading will fail. This is a common source of problems when dealing with Excel and ASCII files. 

After you click “Open” you will see the “Activity Window”: 
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The Activity Window 

 

Activity Window Buttons: The buttons at the bottom of the activity window have the following functions 

 “View Data”… allows the user to see the dataset 

 “Stats…” allows the user to compute summary statistics for each variable 

 “Graphs…” allows the user to build graphs 

 “Correlation…” allows the user to compute measures of correlation and similarity 

 “Data Prep…” allows user to perform data preparation operations inside of SPM 

 “Options…” allows the user change settings for the software  

 “Score…” allows the user to use a previously saved model or a model currently open inside of SPM 
to generate predictions for a dataset 

 “Model…” takes the user directly to the model setup 

Data 

 Records: number of observations = number of rows in the dataset 

 Variables: total number of variables = total number of columns in the dataset 

 Character: number of variables with character values (Example: a variable with values “Female” 
or “Male”) 

 Numeric: number of variables with only numeric values 

 ***Note: Variables = Character + Numeric 

Variables 

 Provides a list of the variables in alphabetical order. You can change this to the file order by clicking  

 on the dropdown box (see the bottom of the green rectangle above  

 

 

Setting up a TreeNet Model for Regression 

To open the model setup, click the model setup shortcut button     (red rectangle below) 
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After clicking the model setup shortcut button you will see the model setup dialog pictured below. The first 
tab that you will see is the Model Tab (yellow rectangle below) 

1. Set the Analysis Engine to TreeNet Gradient Boosting Machine. 

2. Set the Target Type to Regression. 

3. Click the checkbox for the desired variable in the target variable (blue rectangle below). 

a. A target variable is the variable that you are trying to predict (i.e. the dependent variable; 
this is “Y”). 

4. Click the checkboxes for the desired predictor variables (orange rectangle below). 

5. Choose the settings in the other tabs (see the TreeNet Settings section for more information) and 
then click the Start button to build the TreeNet model. 
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Running TreeNet 

After you click Start button in the picture above, you will see the following progress indicator on the screen 

while the model is being built. The progress indicator lets you know how much time the analysis should 

take and approximately how much time remains. 

 

After analysis is complete, text output will appear in the Classic Output window, and a new window, the 

TreeNet Output, opens. See the TreeNet Regression: Interpreting Results section to see an example of 

the TreeNet output and how to interpret the results.  
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TreeNet Regression: Interpreting Results 
Initial Output 
After the model is complete, you will see the following: 

 

• Training data: file path of your dataset 

• Target variable: the name of your target variable 

• Number of predictors: number of predictors available to be used in the model (i.e. the number of 
predictor boxes checked during the model setup) 

• Important predictors: number of predictors actually used in the model 

• R-Squared: R-Squared value corresponding to the optimal model  

• ICL: “ICL” denotes the “Interaction Control Language”; See the TN Interactions Tab entry for more 
details on ICL. Here we can have two values: “YES” or “NO” 

✓ NO - means that the ICL was not used (i.e. all variables are allowed to interact) 

✓ YES - mans that the ICL was used (i.e. some constraint was added) 

• TreeSize: maximum number of terminal nodes specified in each tree during the model setup 

• Trees grown: maximum setting for the number of trees specified during the model setup 

• Trees optimal: optimal number of trees (Note: this can be different depending on the model 
criterion being used like MAD, MSE, MAPE, or R-Sq) 

• Learn Rate: the learning rate specified during the model setup  

✓ The various summary reports, including Variable Importance rankings, R-squared, and gains charts 
and all the 2D and 3D graphs displayed above apply to a SINGLE model. In the example above this is 
the model that consists of exactly 193 trees. 

✓ If you decide to work with a cut-back model, you can view graphs and displays for the smaller model, 
but you may have to rerun the model and either stop its evolution early or explicitly request that details 
be saved for many sub-models.  
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• N Learn –number of records in the learning data (the learning data is sometimes called the “training 

data”) 

• N Test –number of records in the testing data (the testing data is sometimes called the “validation 

data”) 

• Optimal Model – shows the optimal value for four model evaluation criteria along with the 

corresponding number of trees for each 

✓ ***Note that the optimal number of trees can be different depending on the measure 

of used*** 

✓ MAD – Median Absolute Deviation; The optimal MAD value is .29368 and occurs at tree 

200 

✓ MSE – Mean Squared Error; The optimal MSE value is .13556 and occurs at tree 200  

✓ MAPE – Mean Absolute Percentage Error; The optimal MAPE value is 1.73434 and occurs 

at tree 64 

✓ R-Sq – R-Squared; The optimal R-Squared value is .90765 and occurs at tree 200  

• Loss criterion: the loss function specified during the model setup 

✓ Note that the R-squared of the optimal model on TEST data is 0.903 
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Error Curves 

 

The curve in the picture above shows the Median Absolute Deviation (MAD) on the y-axis and the Number 

of Trees (i.e. the number of iterations) on the x-axis. Notice that the key on the right (pink rectangle above) 

shows the colors that correspond to one of the three curves:  

1. Learn Error Curve  

a. The learn error at iteration K is the error for the entire learning sample using the first K 

trees. 

2. Learn Sampled Error Curve  

a. Recall: we take a random subsample in each iteration and each iteration corresponds to 

fitting a CART tree to the generalized residuals. The learn sampled error at iteration K is 

the error for the subsample taken at the Kth iteration using the first K trees.  

3. Test Error Curve  

a. The test error at tree K is the error for the entire test sample using the first K trees.  

The above picture is for the MAD curve, but you can view any of the following curves by clicking the desired 

button along the bottom (purple rectangle above; notice the MAD button is already selected) 

1. Mean Squared Error (MSE)  

2. Median Absolute Deviation (MAD) 

3. Mean Absolute Percentage Error (MAPE) 

4. R-Squared 

The exact numeric minimum of the Mean Absolute Deviation (MAD) on the test data was attained at the 

200-tree model highlighted by the green beam (orange arrow above points to the green bream at tree 

200).  
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Summary Button 

 

The overall performance of the TreeNet regression model is summarized in model summary reports. To 

access the reports, click the “Summary…” button (red rectangle above). This yields a detailed information 

about the optimal TreeNet model (i.e. the one with 200 trees). 

 

Summary Tab 

The Summary Tab (yellow rectangle below) provides model error measures for the learn, test, and learn 

sampled data (see the Error Curve section of this manual for the definition of the learn sampled error).  
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Dataset Tab 
The Dataset Tab provides information concerning the learn and test samples, record deletion, and the 

distribution of the target variable in the learn and test samples.  

 

Sampling Partition Information 

Provides information about the learn and test data. The learn sample has 7,000 observations 

that comprise 70% of the total number of records whereas the test sample has 3,000 records 

that comprise 30% of the total number of records.  

Record Deletions  

TreeNet models automatically handle missing values in the predictor variables, but if there are 

missing values in the target variable then these records are deleted (this is why we have a 

column called “Target Missing”).  

Distribution of the Target Variable 

Provides summary statistics for the target variable in the learn sample (i.e. the first row) and 

summary statistics for the target variable in the test sample (i.e. the second row).  
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 Variable Importance Tab 

 

Computation & Interpretation 

Recall that in each iteration of the gradient boosting algorithm we fit a CART tree to generalized residuals. 

In CART, all possible split values are evaluated for every variable. The split appearing in the tree is the 

variable and split point combination that has the largest split improvement value. Each time a variable is 

used in a TreeNet model, the split improvement is recorded. 

1. Raw Variable Importance: computed as the cumulative sum of improvements of all splits 

associated with the given variable across all trees up to a specific model size. Note that 

smaller models will typically involve fewer variables; thus, limiting the number of variables 

with non-zero importance scores, whereas larger models will often utilize a larger number 

of predictors. 

2. Relative Variable Importance: (red rectangle above) rescales the variable importance 

values so that they are on a scale of 0 to 100 (the most important variable always gets a 

value of 100). All other variables are rescaled to reflect their importance relative to the most 

important variable. 

a. Interpretation: in the above picture, the variable X1 is the most important variable 

and Z1$ has a relative importance of 50.41, so we can say that X1 is around twice 

as important as Z1$. Similarly, we can say that the variable X1 is over 9 times as 

important as the variable X9 (10.98*9~99 which is close to X1’s variable 

importance value of 100)  

b. Relative Importance Rescaling: divide each variable’s raw importance score by 

the largest raw importance score and multiply by 100  

✓ This conclusion is further supported by the analysis of contribution plots described in a later section. 
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New Keep List 

The variable importance lists are interactive: you can highlight a subset of variables and then quickly 
rebuild a model using only the highlighted variables.  
 

 

New Keep List 

A KEEP list is a list of variables that you want to select as predictors in the model. KEEP lists are an SPM 

command line feature that are very useful when you have a large number of variables. Clicking New Keep 

List above opens the SPM Notepad that includes KEEP list commands.  
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Notice how the variables in the list correspond to the variables that are highlighted. Press CTRL W to submit 

the commands. After you submit the commands, open the model setup again. Notice how only the variables 

you entered in the KEEP list are now selected as predictors. 
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New Keep & Go 

 

New Keep & Go 

First, highlight the variables in the variable importance list by clicking and dragging. Clicking “New Keep & 

Go” will immediately build a TreeNet model using only the highlighted variables.  
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Select All 

 

Select All 

Click Select All to highlight all the variables in the variable importance list (red rectangle above). The 

Select All feature is useful if you wish to quickly build a new TreeNet model using New Keep & Go when 

you have a large number of variables. To accomplish this: 

1. Uncheck the “Show zero importance variables” checkbox so that the unimportant variables are 

not included in the list. 

2. Click the “Select All” button. 

3. Click the “New Keep & Go” button. 

Click “New Keep & Go” to build a TreeNet model using only the variables highlighted (in this case only the 

variables with a positive variable importance score).  

Variables count and Non-zero count 

Provides quick summary information.  

Variables count: number of variables selected as predictors 

Non-zero count: number of variables with a variable importance score greater than zero  

✓ The various summary reports, including Variable Importance rankings, R-squared, and gains charts 
apply to a SINGLE model. In the example above, this is the model that consists of exactly 200 trees 
because the model with 200 trees was the optimal model.  
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✓ Although the best model is the one normally recommended for further study, there is nothing preventing 
you from looking at other models. In fact, you can access results for any model in the TreeNet sequence 
of models, which means that you can review results for models with 1, 2, 3, 4, etc. trees. 

✓ To economize on resources, we display the overall performance for every size of model beginning with 
the one-tree model, but we only display detailed summary reports and graphs for select models. You 
can control how many such models are accompanied with details.  
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Resid. Trim % Tab 

 

The Resid. Trim % tab shows you how the performance of the model is affected after you trim a specific 
number of residuals according to their absolute size. The absolute value of the residuals (i.e. “absolute 
residuals”) is computed and then the absolute residuals are sorted in descending order. The residuals 
are then trimmed according to a certain percentile (i.e. the top 1 percent of the absolute residuals, the 
top 2 percent of the absolute residuals, etc.) 

Percentile: the percentile of the distribution of the absolute residuals (any value less than 100% 
means that trimming has occurred) 
N Residuals: the number of total absolute residuals considered 

Interpretation (the interpretation for the other rows is the same)  

 First Row: the first row shows the model performance measures without any residual trimming 

Second Row: if you trim the top 1% of the residuals (this corresponds to removing the top 30 

residuals so that there are 3,000 – 30 = 2,970 residuals remaining), then the model will have the 

following performance: R-Sq = .90819, MSE = .12896, MAD = .28963, RMSE = .35911, MAPE = 

1.10810, SEE = 383.02166, AIC = -6,059.23032, AICc = -6,059.12481, and BIC = -5,987.27451 

Third Row: if you trim the top 2% of the residuals (this corresponds to removing the top 60 

residuals so that there are 3,000 – 60 = 2,940 residuals remaining), then the model will have the 

following performance: R-Sq = .91151, MSE = .12132, MAD = .28303, RMSE = .34831, MAPE = 

1.09714, SSE =356.68240, AIC = -6,177.39818, AICc = -6,177.39818, and BIC = -6,105.56421 

***Focus on the change in the performance metrics. For instance, the change in the R-sq after 

trimming the top 2% of absolute residuals is .91151 - .90288 = .008. Look for large changes.*** 
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Resid. Trim %: Additional Controls 

 

Precision: number of decimal places displayed (the default is 5)  

N Learn: total number of records in the learn sample 

N Test: total number of records in the test sample 

Learn, Test, and Holdout Buttons: view residual trimming statistics for the learn, test, and 

holdout samples 
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Resid. Trim Cnt Tab 

 

The absolute value of the residuals, called “absolute residuals,” is computed and then the absolute 

residuals are sorted in descending order. The residuals are then trimmed according to a certain count 

(i.e. the largest absolute residual, the top 5 largest absolute residuals, etc.). The Resid. Trim Cnt Tab 

shows you how the performance of the model is affected after you trim a particular number of the 

absolute residuals.  

Percentile: percentile of the distribution of the absolute residuals (any value less than 100% 

means that trimming has occurred)  

N Residuals: total number of absolute residuals considered (Note the first row in this column 

corresponds to no trimming) 

Interpretation 

First Row: no trimming 

Second Row: trimming the largest absolute residual results in following metrics for the model: 

R-sq of .90327, MSE = .13973, MAD=.29756, RMSE=.37380, MAPE = 1.11517, SSE = 419.04948, 

AIC = -5,878.16751, AICc = -5,878.06302, and BIC = -5,806.09510 

Third Row: trimming the 5 (= 3,000 – 2,995) largest absolute residual results in following metrics 

for the model: R-sq of .90392, MSE = .13756, MAD=.29618, RMSE=.37089, MAPE = 1.11539, SSE 

= 411.98167, AIC = -5,917.24338, AICc = -5,917.13875, and BIC = -5,845.18699 
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Resid. Trim Cnt: Additional Controls 

 

Precision: number of decimal places displayed (the default is 5)  

N Learn: total number of records in the learn sample 

N Test: total number of records in the test sample 

Learn, Test, and Holdout Buttons: view residual trimming statistics for the learn, test, and 

holdout samples 

 

 

 

 

 

 

 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 84 

Resid. Outliers CUM % Tab 

 

The absolute value of the residuals, called “absolute residuals,” is computed and then the absolute 

residuals are sorted in descending order. The Resid. Outliers CUM% shows you the percentage of the 

sorted absolute residuals that account for a certain percentage of the model error (i.e. MSE, MAD, or 

MAPE in the regression setting).  

Interpretation 

First Row: the top 1% of absolute residuals (1% 3,000 is 30; there are 3,000 residuals for a test 

sample) account for 9.05301% of the MSE, 3.75975% of the MAD, and 32.77155% of the MAPE 

Third Row: the top 2.5% of absolute residuals (2.5% of the 3,000 is 75; there are 3,000 residuals 

for a test sample) account for 17.98051% of the MSE, 8.35675% of the MAD, and 45.59834% of 

the MAPE 

And so on…  

Precision: number of decimal places 

N Learn: number of records in the learn data 

N Test: number of records in the test data 

Learn, Test, and Holdout Buttons: click the desired button to see cumulative percentage statistics for 

the residuals 
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Resid. Outliers Counts Tab 

 

The absolute value of the residuals, called “absolute residuals,” is computed and then the absolute 

residuals are sorted in descending order. The Resid. Outliers Counts shows you the number of residuals 

(largest absolute residual, top 5 absolute residuals, and so on) that account for a certain percentage of 

the model error (i.e. MSE, MAD, or MAPE in the regression setting). 

Interpretation 

First Row: the largest absolute residual accounts for .49835% of the MSE, .16208% of the MAD, 

and 4.23057 of the MAPE 

 
Second Row: the 10 largest absolute residuals account for 3.8408% of the MSE, 1.42% of the 

MAD, and 20.07174% of the MAPE 

And so on… 

Precision: number of decimal places 

N Learn: number of records in the learn data 

N Test: number of records in the test data 

Learn, Test, and Holdout Buttons: click the appropriate button to see cumulative percentage statistics 

for the residuals 
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Resid. Box Plot Tab 

 

The Resid. Box Plot tab shows a box plot of the residuals and associated statistics.  

Percentile and Residual: The percentiles of the distribution of the residuals or the absolute 

residuals (see the “Residual and Absolute Residual Buttons” entry below).  

Learn, Test, and Holdout Buttons: In the picture above, the Test button is selected and shows 

the distribution of the residuals for the test sample (you can also see the distribution for the 

absolute residuals; see the “Residual and Absolute Residual Buttons” entry below). For 

example, clicking the “Learn” button will show the boxplot and associated percentile statistics 

for the residuals (or absolute residuals) for the learning data.   

IQR, 3IQR Upper, and 3IQR Lower:  

IQR = Q3 – Q1 where Q3 is the third quartile and Q1 is the first quartile. 

3IQR Upper = Q3 + |3*IQR|  

3IQR Lower = Q1 - |3*IQR| 

Boxplot of the Residuals: shows the boxplot of the residuals or the absolute residuals (see the 

“Residual and Absolute Residual Buttons” entry directly below). 

Residual and Absolute Residual Buttons: click either the “Residual” button or the “Absolute 

Residual” button to see the desired boxplot, percentiles, and statistics  
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Score Distribution Tab  

 

The Score Distribution Tab shows you the boxplot of the predicted values and associated statistics.  

Percentile and Residual: percentiles of the distribution of the predicted values.   

Learn, Test, and Holdout Buttons: In the picture above, the test button is selected and shows 

the distribution of the predicted values for the test sample. For example, clicking the “Learn” 

button shows the boxplot and associated percentile statistics for the predicted values using the 

learn data.  

IQR, 3IQR Upper, and 3IQR Lower:  

IQR = Q3 – Q1 where Q3 is the third quartile and Q1 is the first quartile. 

3IQR Upper = Q3 + |3*IQR|  

3IQR Lower = Q1 - |3*IQR| 

 

 

 

 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 88 

Display Plots Button 
In TreeNet software you can specify that partial dependency plots (PDPs) are created before the model 

is built (see the Plots & Options Tab section above; to create PDPs after the model has been built, see 

the Create and Viewing Dependency Plots section below). To view the partial dependency plots, click the 

“Display Plots...” button (see red rectangle below)  

 

After you click the “Display Plots…” button you will see the following menu.  
 
View All Plots  

 

Click “Show All” to display all plots (this may take a while if you requested many plots; see the Warning: 

Number of PDPs section for information on the number of plots generated).  

Click “Close All” to close all plots. 
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View All One (or Two) Variable PDPs Only  

Click either one of the “plus” sign + for the one or two-variable partial dependency plots in the orange 
rectangle below: 

 

Click the other plus sign (blue rectangle below) to expand the list of variables with one variable PDPs. 

 

Click the “Trees = 200 (Optimal)” label to view all one variable PDPs or click the name of an individual 

variable to view a partial dependency plot (any name in the green rectangle above) for a single variable. 

Here is the result of clicking “Trees = 200 (Optimal)” 
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All One Variable PDP Plot Controls 

 

Rank Order– “de-scales” the horizontal axis such that all sampled points are spaced uniformly. 

This helps viewing “congested” areas of plots, especially when outliers are present. 

Trim Plots– truncate plot tails usually due to outliers. 

Line– view the PDPs as shown in the picture above  

Specify & Code– controls for spline approximations to the partial dependency plots (see the 

Spline Approximations section below for more details)  

Scatter– view individual points that were sampled in plots construction. This is useful in identifying 

possible outliers or “empty” areas of data. 

 

Y-Axis: Same Scale – imposes an identical scale on all vertical axes and allows you to see the 

comparative effect of different variable contributions  

X-Axis: All Values or Zoomed – zoom in on the x-axis if desired (Zoomed option) otherwise 

the “All Values” option that is shown above will be used  

Goto Variable – use to navigate directly to the partial dependency plot of a particular variable of 

interest. This is useful when there is a large number of predictors (in that case searching 

through all of the plots can be quite tedious)  
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View an Individual PDP 

1. Click the desired variable name in the Plot Selection setup (green rectangle below) after clicking 
the desired plus signs + 

 
 

2. Double click on the desired plot if viewing all PDPs (red rectangle below; this is applicable when 
viewing either all one variable plots or all two variable plots) 
  

 

The result of using either (1) or (2) is the following: 
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Partial Dependency Plots (PDPs) 

Partial dependency plots represent a very powerful interpretational side of TreeNet. They were designed 

to help understand how individual variables or pairs of variables contribute to the predicted response 

once the effects of all remaining predictors have been accounted for. 

Depending on the complexity of a TreeNet model, the plots can be either exact or at the very least 

provide useful visual approximations to the nature of dependencies. The former case arises for truly 

additive models or models with completely isolated interacting pairs of variables, for example, utilizing the 

ICL language introduced later in this manual. 

 

Constructing One Variable PDPs 

As an example, let’s say that we have built a TreeNet model and we want to construct a partial 

dependency plot for a predictor variable X1. To generate the partial dependency plot for X1 we follow the 

following steps: 

1. Randomly select a record 

2. Plug the record from Step 1 into the model. This produces a predicted value 

3. Hold all values for all variables in the record constant except change the value for X1. Plug this 
new artificial record into the model which produces a predicted value. 

a. By “change the value for X1” we mean just use other values occurring in the data 

4. Repeat Step 3 for every unique value of X1. This generates multiple predicted values that are 
plotted against the variable X1 and then connected to form one curve.  

5. Repeat Steps 1-4 many times (the default in SPM is 500). This produces multiple curves.  

6. Average and center the curves to get the partial dependency plot for the variable X1.  

This process is illustrated in the picture below: 
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Constructing Two Variable PDPs 

To construct two-variable partial dependency plots, follow the same procedure discussed above in the 

Constructing One Variable PDPs section except that when plotting two variables, the result is a surface 

instead of a line. As an example, let’s say that we have built a TreeNet model and we want to construct a 

partial dependency plot for predictor variables X1 and X5. To generate the partial dependency plot for X1 

and X5 follow these steps: 

1. Randomly select a record. 

2. Plug the record from Step 1 into the model. This produces a predicted value. 

3. Hold all values for all variables in the record constant except change the value for X1 and X5. 
Plug this new artificial record into the model which produces a predicted value. 

a. By “change the value for X1 and X5” we mean just use other values that occur for X1 and 
X5 in the data. 

4. Repeat Step 3 for every unique combination of X1 and X5. This generated multiple predicted 
values which are plotted against both X1 and X5 to form one surface. 

5. Repeat Steps 1-4 many times (the default in SPM is 500). This produces multiple surfaces.  

6. Average and center the surfaces to get the two-variable partial dependency plot for the variables 
X1 and X5.  
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Interpreting One Variable PDPs 

Important things to remember when interpreting Partial Dependency Plots (PDPs) include: 

1. The scale of the Y-axis: the average of the scale used to make predictions during the 

modeling process 

a. Example: All predictions in the binary classification setting are on the ½ log odds 

scale during the modeling run (Note: SPM will automatically convert this to 

probabilities for the output you see and when you score the model), and thus the Y-

axis for PDPs in the binary classification setting is the average ½ log odds.  

b. Example: All predictions in the Least Squares, Least Absolute Deviation, and Huber-

M are made on the scale of the target variable, and thus the Y-axis for PDPs when 

using Least Squares, Least Absolute Deviation, and Huber-M is the average target 

variable scale.  

c. Why is the Y-axis an average? In constructing the partial dependency curve we 

average multiple curves to obtain the final single curve shown to the user and thus 

the Y-axis is an average response (see the Constructing One Variable PDPs section 

for a detailed description of the construction of one variable PDPs). 

2. PDPs are marginal plots: should only be interpreted in terms of the change in Y, given a 

change in the predictor variable(s). 
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LAD Loss & Continuous Predictors 

Consider the following partial dependency plot for a predictor variable called X2 that was used in a TreeNet 

model with a continuous target variable named Y1. 

 

Notice that TreeNet has captured a (marginal) nonlinear relationship between the predictor variable X2 and 

the target variable Y1. The red, green, and pink rectangles were generated outside of SPM.  

Interpretation  

If X2 is increased from -3 to -1, then the target variable Y1 decreases, on average, by approximately 

.236 (.236 =.275 - .039) after accounting for the other variables in the model 

See the picture above. Click the “Markers” button above to display the dotted blue line 

shown in the picture. The dotted blue line has a pair of coordinates (x-value, y-value) 

that allow you to obtain the values used in the calculation .236 = .275 - .039.  

If X2 is increased from 0 to 2, then the target variable Y1 increases, on average, by approximately 

by .434 (.434 = .196 – [-.238]) after accounting for the other variables in the model 

If X2 is increased from 2 to 3, then the target variable Y1 increases, on average, by approximately 

by .173 (.173 = .369 -.196) after accounting for the other variables in the model 

.275 

.039 

.275 - .039 = .236 
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LAD Loss & Categorical Predictors 

 

In this example, we have a continuous target variable called Y1 and a categorical predictor Z1 (Note: you 

can see the Z1$ label in the bottom of the plot; the dollar sign $ means that the variable has character 

values). The dotted lines and rectangles shown in the picture were created outside of TreeNet software.   

Interpretation: 

If Z1$ has a value of “ONE”, then the target variable Y1 decreases by approximately .25 after 

accounting for the other variables in the model  

If Z1$ has a value of “THREE”, then the target variable Y1 increases by approximately .36 after 

accounting for the other variables in the model 

If Z1$ has a value of “TWO”, then the target variable Y1 increases by approximately .04 after 

accounting for the other variables in the model 

If Z1$ has a value of “ZERO”, then the target variable Y1 decreases by approximately .53 after 

accounting for the other variables in the model 

The Y-axis for the Least Absolute Deviation, Least Squares, Huber, and Quantile loss functions have Y-

axis scales that are the average of the actual target variable. 

 

 

 

    

.36 

.04 

-.25 

-.53 
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Spline Approximations to the PDPs 

Users have the option to produce spline approximations to the one variable partial dependency plots for 

continuous predictor variables. See the Spline Approximations to the Partial Dependency Plots section for 

more information.  

 

Create Plots Button 

TreeNet has a powerful facility to generate partial dependency plots for any variable, or pair of variables, 

and any model size selected by the user. Click the Create Plots… button in the TreeNet output window 

(this is only available for most recent TreeNet modeling run). See the Create Plots Button section for more 

information. 
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Example: Building a Classification/Logistic Binary Model 

TreeNet “Logistic Binary” is the recommended way to model any binary outcome and is probably the most 

popular use of TreeNet. Although most analysts think of this type of model as CLASSIFICATION, in TreeNet 

we consider it as a special type of regression. This is because we want to produce a PROBABILITY of 

response for and not just a simple prediction of “YES” or “NO.” TreeNet’s ability to produce extremely 

accurate rankings of data from “most likely” to “least likely” underpins its strong performance in many data 

mining settings. 

The first point to make is that this section is concerned exclusively with the binary or two-valued target 

variable. This variable is often coded as “0” and “1” or “YES” and “NO” or “RESPONSE” and 

“NONRESPONSE,” etc. Such models are by far the most common in data mining applications and are used 

to predict: 

 Default in credit risk scoring 

 Response in targeted marketing campaigns 

 Fraud in insurance, credit card transactions, and loan applications 

 Disease (or abnormal versus normal) in biomedical settings 

 

✓ If you want to analyze such data, then the logistic regression style of TreeNet is likely to give you the 
best results. 

There is no such thing as a “best model” absent a context and an objective. When you run TreeNet, the 

software builds its model in stages, adding a tree at each stage in an effort to refine performance. Typically, 

the first tree yields a modest performance, the second tree improves on it, the third tree improves further, 

and so on. At some point in the process, adding further trees does no good and may even do some harm! 

The entire set of trees grown is called the model sequence, and after the specified number of trees is 

generated, we want to determine how many of the trees to keep. To assist in this process we track the 

following four performance criteria at each stage of the modeling sequence and identify the best number of 

trees to keep for each of the performance criteria: 

Classification Accuracy: based on a straightforward tally of how often the model tags a record correctly 
or incorrectly. If you intend to use the model to simply tag data as either “YES” or “NO” then this criterion 
will help you select the best model. 

Area under the ROC curve: most commonly-used model criterion in machine learning and is a measure 
of overall model performance tied closely to the ability of the model to correctly RANK records from 
most likely to least likely to be a “1” or a “0.” 

Average Log-Likelihood: similar to ROC but emphasizes the probability interpretation of the model 
predictions. This is an option for technical users who may prefer this measure for theoretical reasons. 

Lift in the top X-percentile: focuses on the ability of the model to concentrate the responders or the “1”s 
in the highest ranking records. This criterion is useful if the model is intended to exclusively identify, 
say, the top 1%, 5% or 10% of a data set. In this case, you can safely ignore model performance in the 
lower percentiles.  

✓ It is not possible to tell in advance how many trees will be optimal. 

✓ The best number of trees can vary quite a bit depending on which performance criterion you select.  

✓ Typically, the best model for classification accuracy has many fewer trees than the best model for best 
probability estimates (Ave LL) or overall performance (ROC). Best lift is also usually accomplished with 
relatively few trees. 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 99 

✓ The best model is normally determined by performance on test data or via cross validation. When no 
independent testing is specified (exploratory runs), the optimal model is always set to the largest 
number of trees. 

✓ It is possible to manually select a non-optimal model of any size for graphical display, obtaining 
summary reports, scoring and translation. 

The following section describes how to set up a logistic regression run in TreeNet, and we also provide 

detailed comments on every setup option available. 

 

Creating a Sample Example Model Data Set 

A sample data set, SAMPLE.CSV, is supplied as part of the TreeNet installation. It is located in the Sample 

Data folder. 

The following table lists the major groups of variables in the data set. 

Variable Names Description 

X1, … , X10 Continuous predictors 

Z1$, Z2$ Categorical predictors (character) 

Y1 Continuous target 

Y2 Binary target coded +1 and -1 

Y3 Categorical target with 4 levels: 1, 2, 3, and 4 

W Weight variable 

T 
Learn/Test dummy indicator  
(0 – learn, 1 – test) 
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Reading Data In 

To open the input file SAMPLE.CSV: 

Select Open>Data File… from the File menu. 

✓ You may simply click on the  button in the toolbar 

 

Use the Open Data File dialog window to navigate to the Sample Data folder in the SPM installation 
directory. 

Choose Delimited (*.csv,*.dat,*.txt) in the Files of type: selection box. 

Highlight SAMPLE.CSV. 

 

 

Click the Open button to load the data set into TreeNet. 

 Make sure that the data set is not currently being accessed by another application. If it is, the data 
loading will fail. This is a common source of problems when dealing with Excel and ASCII files. 

After you click “Open” you will see the “Activity Window”: 
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The Activity Window 

 

Activity Window Buttons: The buttons at the bottom of the activity window have the following 

functions 

a. View Data… allows the user to see the dataset 

b. Stats… allows the user to compute summary statistics for each variable 

c. Graphs… allows the user to build graphs 

d. Correlation… allows the user to compute measures of correlation and similarity 

e. Data Prep… allows user to perform data preparation operations inside of SPM 

f. Options… allows the user change settings for the software  

g. Score… allows the user to use a previously saved model or a model currently open inside 
of SPM to generate predictions for a dataset 

h. Model… takes the user directly to the model setup 

✓ The activity window step can be skipped using the Options dialog. 

Data 

Records: number of observations = number of rows in the dataset 

Variables: total number of variables = total number of columns in the dataset 

Character: number of variables with character values (Example: a variable with values “Female” 
or “Male”) 

Numeric: number of variables with only numeric values 

***Note: Variables = Character + Numeric 

Variables 

Provides a list of the variables in alphabetical order. You can change this to the file order by clicking  

on the dropdown box (see the bottom of the green rectangle above) 
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Setting up the Classification Model 

We will now setup a TreeNet model for a binary classification problem. In the Model tab we specify our 

core model variables. Variables specified in this dialog include a target (dependent), predictors 

(independent), categorical designation, and optionally a single case-weight variable. 

i. To open the model setup click the model setup shortcut button     (red 
rectangle below) or click “Model” in the Activity Window (see above). A data set 
must be currently open in the SPM for this operation to work. 
 

 

 

After clicking the model setup shortcut button you will see the model setup dialog pictured below.  
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Model Tab 

 

The first tab that you will see is the “Model” tab (yellow rectangle) 

1. Set the Analysis Engine to TreeNet Gradient Boosting Machine. 

2. Set the Target Type to Classification/Logistic Binary. 

a. Select Classification/Logistic Binary when your target is binary (two classes) or multinomial 

targets (more than 2 classes). TreeNet will automatically determine if the target is binomial 

or multinomial.  

3. Click the checkbox for the desired variable in the target variable: in this case the target variable 

is the binary variable called Y2. A target variable is the variable that you are trying to predict.  

4. Select potential predictors under the Predictor column. 

a. You may highlight multiple variables first by using a left mouse click and/or the <Shift> or 

<Ctrl> keys while clicking in the Variable Name column. Once selected you may either 

check or uncheck the corresponding check marks simultaneously for the selected variables 

by using the check box at the bottom of the appropriate column (i.e. Select Predictors or 

Select Cat. Checkboxes).  

5. Indicate which predictors are categorical by placing check marks under the Categorical column 

for the corresponding variables. Variables with character values, are automatically set to 

Categorical have a dollar sign $ appended to the variable name.  

6. Optionally, specify a weight variable using a check box under the Weight column (these are 

observation weights; only one weight variable may be active at a time). 

7. Sort option: order the variables listed alphabetically or by their file order.  

8. Click the Set Focus Class… button to specify the event of interest (see the next section for more 

information on the focus class). 
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✓ Correctly declaring variables as categorical is less important for TreeNet than for CART or other 
modeling methods. TreeNet is capable of uncovering the true relationship between the target and a 
categorical predictor whether the declaration is made or not. However, some graphs will be much easier 
to read if the declarations are made. For high level categorical predictors, however, it may be 
advantageous to treat such predictors as numeric. 

✓ All character variables (variables ending in $) are automatically checked as categorical and cannot be 
unchecked. 

✓ Using high-level categorical variables may significantly increase the running time and impose severe 
memory requirements. Make sure that a continuous variable has not been accidentally checked as 
categorical. 

✓ Consider letting TreeNet treat a high-level categorical variable as a continuous predictor if it has more 
than about 30 levels. This is unlikely to hurt the model and may actually improve results quite a bit. This 
is possible only if the HLC is coded as numeric rather than text. 

Focus Class: Specifying the Event of Interest 
The “event of interest” (called the “focus class” in SPM) is the event that you wish to see 

predicted probabilities for. For instance, if your target variable Y is coded as 0 or 1 with 0 

representing “No Default” and 1 representing “Default” and you want the predicted value to be 

the probability of “Default” then set the focus class to 1.  

✓ Setting the Focus Class does not change the essence of the modeling itself but it will affect the 
presentation of the graphs and various reports. 

To setup the event of interest in SPM click the “Set Focus Class” button which will yield  

 

Here we are going to set the Focus Class to be 1: 

1. Click on the class of interest in the left pane 
2. Click the right arrow > button 

a. You will see the selected class appear in the right pane 
3. Click the OK button 
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Categorical Tab 

In the “Categorical” tab you will see the “Number of Levels” (blue rectangle below) for each categorical 
variable here if you compute summary statistics first, otherwise you will see “Unknown” as seen here (we 
did not compute summary statistics before opening the model setup).  

 

Set Class Names for the Target Variable  

After you click the “Set Class Names” button, you will see the following menu that allows you to add 
labels for particular values of categorical variables: 

1. Class Values Menu 

a. “File Value” is the original value of variable in the dataset  

b. “Display Value” is the label that you want to add to a specific value of the original 
value  

2. Click the Add button to add the label for the variable Y2 and you will see the labels 
added on the left.   

3. Click the Done button when you are finished adding labels  

✓ You will see the class labels in the output. 

✓ The choice of the Focus Class does not change the essence of the modeling itself, but it does affect 
the interpretation of the graphs and various reports. 
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TreeNet Parameters Specific to Classification 
Some TreeNet options are specific to the choice of the Target Type in the Model Tab (i.e. the target type 

can be either “Classification/Logistic Binary” or “Regression”). The following parameters are specific to 

TreeNet in the classification setting and should be considered when building a TreeNet classification 

model (TreeNet parameters that are not included in this list affect both “Classification/Logistic Binary” and 

“Regression” models). Click each of the links below to learn more: 

1. Classification Loss Functions 
2. Criterion Determining Number of Trees Optimal for Logistic Model 
3. Total Influence Fraction  
4. Subsample Separately by Target Class 
5. Influence trimming Limited to Focus Class and/or Correctly Classified 
6. Class Weights 
7. TreeNet Calibration 

 

Choosing the Classification Loss Function  

Setting the Target Type to be “Classification” in the Model Tab section changes the types of loss 

functions and are shown below. For this example, we will set the loss function to “Classification/Logistic 

Binary” because our target variable is a binary variable (i.e. it has only two values: -1 and 1), and 

“Classification/Logistic Binary” handles both binary (two classes) and multinomial (more than two 

classes) classification problems. See the Classification Loss Functions section for more detail on the loss 

functions and see the TreeNet Tab section for more detail on the other settings in this tab.  

 

We will leave the total influence fraction at its default value of 0.10.  
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Advanced Options for Classification Models 

 

In the TN Advanced Tab you can 

1. Subsample Separately by Target Class. This is helpful when one of the two classes is very 
rare. Here we will leave this setting at its default setting of 50% subsampling fractions for 
each class.  

a. See the Advanced Sampling Methods section for more information.  

2. Customize the influence trimming options. Here we will leave this setting at its default 
setting of trimming both the Focus Class and Other Class as well as both Correct and 
Misclassified records. 

a. See the Influence Trimming Limited to Focus Class and/or Correctly Classified 
section for more information.  

Click the Start button to run the model (you can click the Start button from any of the other tabs).  

Running TreeNet 

After you click the Start button in the picture above, the following progress indicator appears while the 

model is being built. The progress indicator lets you know how much time the analysis should take and 

approximately how much time remains. 
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After the analysis is complete, text output appears in the Classic Output window, and a new window, the 

TreeNet Output, opens. See the Classification/Binary Logistic: Interpreting Results section to see an 

example of the TreeNet output and how to interpret it.  

Classification/Binary Logistic: Interpreting Results 
In this section and the subsections that follow we will explain the output of a TreeNet model.  

Initial Output I 
When the model is complete, you will see the following: 

 

• Training data: file path of your dataset 

• Target variable: name of your target variable 

• Number of predictors: number of predictors available to be used in the model (i.e. the number of 
predictor boxes checked during the model setup) 

• Important predictors: number of predictors actually used in the model 

• ICL: “ICL” denotes the “Interaction Control Language”; See the TN Interactions Tab entry for more 
details on ICL. Here we can have two values: “YES” or “NO” 

✓ NO - means that the ICL was not used (i.e. all variables are allowed to interact) 

✓ YES- means that the ICL was used (i.e. some constraint was added) 

• TreeSize: maximum number of terminal nodes specified in each tree during the model setup 

• Trees grown: maximum settings for the numbers of trees specified during the model setup 

• Trees optimal: optimal number of trees (Note: this can be different depending on the model 
criterion being used like Neg. AvgLL, ROC, Misclass, or Lift) 

• Learn Rate: learning rate specified during the model setup  

 

 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 109 

  

 

• N Learn –number of records in the learning data (the learning data is sometimes called the “training 

data”) 

• N Test –number of records in the testing data (the testing data is sometimes called the “validation 

data”) 

• Optimal Model – shows the optimal value for four model evaluation criteria along with the 

corresponding number of trees for each 

✓ ***Note that the optimal number of trees can be different depending on the measure 

of used*** 

✓ Neg. AvgLL – Negative Average Log Likelihood (smaller values are preferred) on the test 

sample. The optimal Neg. AvgLL value is .26161 and occurs at tree 200. The Negative 

Average Log Likelihood is similar to ROC but emphasizes the probability interpretation of 

the model predictions. This is offered for technical users who may prefer this measure for 

theoretical reasons. 

✓ ROC – Area Under the ROC Curve for the test sample. The optimal ROC value is .93345 

and occurs at tree 200. This is the most commonly-used model criterion in machine 

learning and is a measure of overall model performance tied closely to the ability of the 

model to correctly RANK records from most likely to least likely to be a “1” or a “0.” 

✓ Misclass– Misclassification Rate for the test sample. The optimal misclassification rate is 

.112 (i.e. 11.20%) and occurs at tree 197. The misclassification rate is based on a 

straightforward tally of how often the model tags a record correctly or incorrectly. If you 

intend to use the model to tag data as either “YES” or “NO” then this criterion will help you 

select the best model.  

✓ Lift – the optimal Lift for the test sample (top 10%) is 1.43472 and occurs at tree 8. Lift 

focuses on the ability of the model to concentrate the responders or the “1”s in the highest 

ranking records. This criterion is useful if the model is intended to be used exclusively to 

identify, say, the top 1%, 5% or 10% of a data set. In this case, we can safely ignore model 

performance in the lower percentiles. 

• Loss criterion: the loss function specified during the model setup 
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✓ It is not possible to tell in advance how many trees will be optimal. 

✓ The best number of trees can vary quite a bit depending on which performance criterion you select.  

✓ Typically, the best model for classification accuracy has many fewer trees than the best model for best 
probability estimates (Ave LL) or overall performance (ROC). Best lift is also usually accomplished with 
relatively few trees. 

✓ The best model is normally determined by performance on test data or via cross validation. When no 
independent testing is specified (exploratory runs), the optimal model is always set to the largest 
number of trees. 

✓ It is possible to manually select a non-optimal model of any size for graphical display, obtaining 
summary reports, scoring, and translation. 
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Error Curves 

  

The curve in the picture above shows the Negative Average Log Likelihood (Neg. AvgLL) on the y-axis and 

the Number of Trees (i.e. the number of iterations) on the x-axis. Notice that the key on the right (pink 

rectangle above) shows the colors that correspond to one of the three curves:  

1. Learn Error Curve (the view of this curve is almost completely obstructed by the other two 

curves)  

b. The learn error at iteration K is the error for the entire learning sample using the first K 

trees. 

2. Learn Sampled Error Curve  

c. Recall: we take a random subsample in each iteration and each iteration corresponds to 

fitting a CART tree to the generalized residuals. The learn sampled error at iteration K is 

the error for the subsample taken at the Kth iteration using the first K trees as the model.  

3. Test Error Curve  

a. The test error at tree K is the error for the entire test sample using the first K trees.  

The above picture is for the Negative Average Log Likelihood (Neg. AvgLL) curve, but you can view any of 

the following curves simply by clicking the desired button along the bottom (purple rectangle above; notice 

how the Neg. AvgLL button is already selected) 

• Negative Average Log Likelihood (Neg. AvgLL)  

• Misclassification Rate (Misclass)  

• Area Under the ROC Curve (ROC)  

• Lift 

• Sample 

The exact numeric minimum of the Negative Average Log Likelihood (Neg. AvgLL) on the test data was 

attained at the 200-tree model highlighted by the green beam (orange arrow above points to the green 

bream at tree 200). 
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Summary Button 

 

Additional performance information about the TreeNet classification model can be accessed by clicking the 

Summary… button.  

 

Summary Tab 

The Summary tab provides model error measures for the learn, test, and learn sampled data (see the Error 

Curve section of this manual for the definition of the learn sampled error).  
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Dataset Tab 
The Dataset tab provides information about the learn and test samples, record deletion, and the 

distribution of the target variable in the learn and test samples.  

 

 

Sampling Partition Information 

Provides information about the learn and test data. The learn sample has 7,000 observations 

that comprise 70% of the total number of records whereas the test sample has 3,000 records 

that comprise 30% of the total number of records.  

Record Deletions  

TreeNet models automatically handle missing values in the predictors variables, but when there 

are missing values in the target variable record deletion occurs for observations with missing 

target values (that is why we have a column called “Target Missing”.  

Target Variable Statistics 

Provides summary statistics for the target variable in the learn sample and test sample for each 

class. Note that the class labels that were defined in the model setup, “Neg One” and “One,” are 

used instead of the actual values -1 and 1.  
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Gains/ROC Tab 

 

Procedure for Generating the Gains Table 
TARGET denotes the actual response (0 or 1, YES or NO, etc.) and it must be known for each case. 

 RESPONSE denotes the scores predicted by the given model. 

 K denotes the predetermined number of bins. 

1. Sort the data by descending RESPONSE. 

2. Divide the data into K bins such that each bin has an approximately equal number of weighted cases. 

The following table defines the columns of this report: 

Gains Tables 

- % of Bin Focus Class – the percentage of 1s in the given bin. 

- % Focus Class – the weighted number of class 1 cases in the bin divided by the total weighted count of 
class 1 cases. 

- Cum % Focus Class – the simple cumulate of the % Focus Class column. This is also known as 
sensitivity, assuming that the classification threshold is set at the corresponding bin boundary. 

- Cases in Bin – the weighted number of cases in the given bin. 

- % Pop – the weighted number of cases in the given bin divided by the total weighted number of cases. 

- Cum % Pop – the simple cumulate of the % Pop column. 

- Cum Lift – Cum % Focus Class divided by Cum % Pop. 

- Lift Pop – % Focus Class divided by % Pop. 
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The graph on the left displays: 

When the Gains button is pressed – Cum % Focus Class versus Cum % Pop. 

When the Lift button is pressed – Lift Pop versus Cum % Pop. 

When the Cum. Lift button is pressed – Cum Lift versus Cum % Pop. 

When the ROC button is pressed – Cum % Focus Class versus (1 – specificity) (The specificity is defined 
similarly to the sensitivity but with respect to the class 0.). This is commonly referred to as the ROC 
curve.  

The number of bins can be changed using the  control. 

The number of bins can be set independently when the Learn or Test buttons are pressed. When the 
Both button is pressed, you will see both curves and the grid will show Test data. This allows extra 
flexibility in displaying the results over different data partitions. 

The class in focus (i.e. the event class; see the Focus Class: Specifying the Event of Interest section for 

more information and how to set this up; can be selected using the Focus Class selection box. 

✓ The ROC curve, while similar to the gains curve, has a number of theoretical advantages, especially 
when considering the model performance on the dominant class (in which case the gains curve may 
degenerate into the 45-degree line). 

Learn, Test, or Both buttons: when the test data are available, both learn and test gains as well as ROC 

charts can be displayed using the Learn, Test, or Both buttons  
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Interpreting Gains 

You can use the following simple interpretation of gains. Assume that a scoring model is built to predict 

potential responders to a certain mail order. If every member of the population is given the offer, all 

responders would be targeted. Now assume that you want to send mail offers to only 10% of the population. 

When a model is not available and offers are mailed randomly, we can expect to collect only about 1/10th 

of the responders. In the presence of a model, instead of random mailing, one could send offers to the 10% 

of the population in the top bin (the highest scores). In this case the expected percent of covered responders 

would be Lift Pop times 1/10th. The interpretation is similar for the other bins and cumulative lift. 

✓ This is a special case (0/1 response) of the regression gains.  

✓ Gains/ROC based on the test data are usually more realistic than gains/ROC based on the training 
data. 

✓ Test gains/ROC are not available when independent testing is disabled (Testing tab in the Model 
Setup). 
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Variable Importance Tab 

 

Computation & Interpretation 

Recall that in each iteration of the gradient boosting algorithm we fit a CART tree to generalized residuals. 

In CART, all possible split values are evaluated for every variable. The split appearing in the tree is one 

variable and split point combination with the largest split improvement value. Each time a variable is used 

in a TreeNet model, the split improvement is recorded. 

1. Raw Variable Importance: computed as the cumulative sum of improvements of all splits 

associated with the given variable across all trees up to a specific model size. Note that 

smaller models typically involve fewer variables; thus, limiting the number of variables with 

non-zero importance scores, whereas larger models will often utilize a larger number of 

predictors. 

2. Relative Variable Importance: (red rectangle above) rescales the variable importance 

values so that they are on a scale of 0 to 100 (the most important variable always gets a 

value of 100). All other variables are rescaled to reflect their importance relative to the most 

important variable. 

Interpretation: For example, in the above picture, the variable X1 is the most 

important variable and Z1$ has a relative importance of 50.41, so X1 is about twice 

as important as Z1$. Similarly, we can say that the variable X1 is over 9 times as 

important as the variable X9 (10.98*9~99, which is close to X1’s variable 

importance value of 100)  

Relative Importance Rescaling: divide each variable’s raw importance score by 

the largest raw importance score and multiply by 100.  

✓ This conclusion is further supported by the analysis of contribution plots described in a later section. 
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New Keep List 

The variable importance lists are interactive: you can highlight a subset of variables and then quickly 
rebuild a model using only the highlighted variables.  
 

 

New Keep List 

A KEEP list is a list of variables that you want to select as predictors in the model. KEEP lists are an SPM 

command line feature and are useful when you have a large number of variables. Clicking New Keep List 

above will open the SPM Notepad with KEEP list commands.  
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Notice how the variables in the list correspond to the variables that are highlighted. Press CTRL W to submit 

the commands. After the commands are submitted, open the model setup again and notice how only the 

variables you entered in the KEEP list are now selected as predictors.  

 

New Keep & Go 

 

New Keep & Go 

First, highlight the variables in the variable importance list as desired by clicking and dragging. Clicking 

“New Keep & Go” to immediately build a TreeNet model using only the highlighted variables.  
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Select All 

 

Select All 

Click Select All to highlight all the variables in the variable importance list (red rectangle above). The 

Select All feature is useful if you wish to quickly build a new TreeNet model using New Keep & Go, but you 

have a large number of variables. To accomplish this: 

1. Uncheck the “Show zero importance variables” checkbox. 

2. Click the “Select All” button. 

3. Click the “New Keep & Go” button. 

Click “New Keep & Go” to immediately build a TreeNet model that uses only the highlighted variables (in 

this case only the variables with a positive variable importance score).  

Variables count and Non-zero count 

This provides quick summary information.  

Variables count: number of variables selected as predictors 

Non-zero count: number of variables with a variable importance score greater than zero  

✓ Although the best model is the one normally recommended for further study there is nothing preventing 
you from looking at other models. In fact, you can access results for any model in the TreeNet sequence 
of models, which means that you can review results for models with 1, 2, 3, 4, etc. trees. 

✓ To economize on resources, we display the overall performance for every size of model beginning with 
the one-tree model, but we only display detailed summary reports and graphs for select models. You 
can control how many models are accompanied with details.  
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Misclassification Tab 

The Misclassification tab provides misclassification statistics for both the learn and test sample.  

 

Learn Sample 

Class- target classes; ***Note: “Neg One” and “One” are labels that we added to the target 
variable values -1 and 1, respectively (see the Set Class Names for the Target Variable section) 

N Cases- number of cases corresponding to the specific target class in the learn sample. The 
number of cases for the “Neg One” class is 2,036 and the number of cases for the “One” class is 
4,964.  

N Mis-Classed- number of misclassified cases corresponding to the specific target class in the 
learn sample. The number of misclassified cases for the “Neg One” class in the learn sample is 
114 and the number of misclassified cases for the “One” class in the learn sample is 600.  

Pct. Error- percent of misclassified cases corresponding to the specific target class in the learn 
sample. The percent of misclassified cases for the “Neg One” class in the learn sample is 5.60% 
and the percent of misclassified cases for the “One” class in the learn sample is 12.09%. 

𝐏𝐜𝐭. 𝐄𝐫𝐫𝐨𝐫 =  
𝐍 𝐌𝐢𝐬𝐂𝐥𝐚𝐬𝐬𝐞𝐝

𝐍 𝐂𝐚𝐬𝐞𝐬
 

Cost- cost associated with the specific target class in the learn sample (you can specify costs via 
the command line).  The (learn sample) cost of misclassifying the 114 “Neg One” class is .05599 
and the (test sample) cost of misclassifying the 600 “One” cases is 0.12087.  

Test Sample- the interpretation is the same, but has different numbers and the phrase “test sample” 
instead of “learn sample” 



Salford Predictive Modeler® Introducing TreeNet® Gradient Boosting Machine 

 122 

 

Threshold Control: The threshold is the point at which a case is classified as the focus class (i.e. the 

focus class is the event of interest). In this example the focus class is the “One” class and a threshold of 

.70 means that a case is only classified as a “One” if its predicted probability is greater than or equal to 

.70. The default threshold value is the percent of records in the test data that correspond to the focus 

class (i.e. the probability of the focus class in the test sample).  

✓  For binary target models, class assignments are based on a specific threshold, which can be changed 
using the Threshold control at the bottom. A higher threshold will decrease sensitivity and increase 
specificity. The  Base line button sets the threshold to percent of target class in the sample. The Balance 
button tries to find a threshold that minimizes difference in Percent Correct between classes. The Show 
Table… button opens a new window with a table summarizing misclassification stats for each available 
threshold. 

Balance button: automatically adjusts the threshold so that the difference in the misclassification rates is 

minimized (i.e. the misclassification rates for the two class levels will be more similar).  

Base line button: sets the threshold back to its default value which is the percent of records in the test 

data that correspond to the focus class (i.e. the probability of the focus class in the test sample). 

Show Table… button: shows a table in a new window with detailed misclassification statistics for each 

available threshold.  
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Show Table… Button Example 
Click the Show Table… button in the picture above and you will see the following table: 

 

Interpretation: If the threshold is set to .09, then class “Neg One” will have 208 correctly classified cases 

and 701 misclassified which corresponds to a class “Neg One” misclassification rate of 77.11771%, a 

sensitivity of .22882, and a specificity of .99809. For class “One,” the threshold of .09 leads to 2,087 

correctly classified cases, 4 misclassified cases which corresponds to a class “One” misclassification rate 

of .19130%, a sensitivity of .99809, and a specificity of .22882. The overall misclassification rate is 23.5%.  
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Confusion Matrix Tab 

The confusion matrix is a standard summary for classifiers of all kinds and is used to assess statistical 

models such as logistic regression as well as more exotic data mining models. We call it the Confusion 

Matrix (in previous versions of SPM it is called the “Prediction Success” table) following Nobel Prize-winning 

economist Daniel McFadden’s 1979 paper on the subject. Confusion matrices based on the learn sample 

are usually too optimistic. You should always use confusion matrices based on the test sample (or on cross 

validation, when a separate test sample is not available) as fair estimates of a Classification Model 

performance.  

  
The Actual Class column lists actual levels of the Target Variable: “Neg One” and “One”. ***Note: instead 

of the actual target values -1 and 1 we see the labels: “Neg One” and “One,” because we specified these 

labels earlier (see the Set Class Names for the Target Variable section)  

 

Total Class column shows total number of observations for each class in the test sample. In the example 

above there are 909 “Neg One” class cases and 2,091 “One” class cases for a total of 3,000 cases.  

 

Percent Correct column shows percent of the class observations that were classified correctly in the test 

sample. In the picture above, 90.87% of the “Neg One” cases were classified correctly, 86.37% of the 

“One” cases were classified correctly. 

 

Average: the average of the percent correct values based on the test sample. In the example above the 

average of 90.87% and 86.37% is 
90.87%+86.37%

2
= 88.62%. 

 

Overall % Correct: overall percent correct for both classes for the test sample. In the example above this 

is can be calculated from the confusion matrix count values (notice that the count button is selected 

in the lower right-hand corner) and multiplying by 100 to obtain a percentage value:  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠
=

826 + 1806

826 + 1806 + 83 + 285
∗ 100 = 87.73333333% 
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Learn, Test, and Holdout buttons- view the confusion matrix for the learn, test, or holdout samples by 

selecting the desired button 

 

Threshold: The threshold is the point at which a case is classified as the focus class (i.e. the focus class 

is the event of interest). In this example the focus class is the “One” class and a threshold of .70 means 

that a case is only classified as a “One” if its predicted probability is greater than or equal to .70. The default 

threshold value is the percent of records in the test data that correspond to the focus class (i.e. the 

probability of the focus class in the test sample). 

✓  For binary target models, class assignments are based on a specific threshold, which can be changed 
using the Threshold control at the bottom. A higher threshold will decrease sensitivity and increase 
specificity.  

Balance, Base line, and Show Table… buttons: The Base line button will set the threshold to the 
percent of target class in the sample. The Balance button tries to find a threshold that minimizes 
difference in Percent Correct between classes. The Show Table… button opens a new window with a 
table summarizing misclassification stats for each available threshold (see the Show Table… Button 
Example section for an example)  

 

Count, Row %, and Column % buttons: The Count button will show the raw count values in the confusion 

matrix and is the default setting, clicking the Row% button allows you to see a percentage breakdown of 

the actual class in terms of the predictions (i.e. 91% of the class 1 cases were classified as class1 and 9% 

of the class 1 cases were classified as class 2; also, the Row% button shows the rounded true negative, 

false negative, false positive, and true positive percentages), the Column% button shows a percentage 

breakdown of the predictions class in terms of the actual class (i.e. 96% of the class 1 predictions had an 

actual value of class1 and 4% of the class 1 predictions had an actual value of class1). See the following 

three interpretation sections for more detail: Interpreting the Confusion Matrix: Count, Interpreting the 

Confusion Matrix: Row %, and Interpreting the Confusion Matrix: Column %.  
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Interpretation: Count 

 
 

In the picture above we have the Predicted Class values (“Neg One” and “One”) along the top and the 

Actual Class values (“Neg One” and “One”) along the bottom. How many cases were predicted as “Neg 

One” when the cases have an actual class value of “One”? To find this value, place your right index finger 

on the class value “Neg One” in the blue rectangle above, and place your left index finger on the class value 

“One” in the red rectangle above. Now bring your two fingers together: they intersect at the value 285. 

This means that we incorrectly classified 285 cases as “Neg One” (this type of mistake is commonly called 

a “false negative”).  

 

Using this strategy, we can interpret the above confusion matrix for the test sample data 

• 826 cases were predicted to be class “Neg One” when the cases were actually class “Neg 

One” (i.e. 826 cases were correctly classified as “Neg One”) 

o These 826 cases are sometimes referred to as “true negatives”  

 

• 285 cases were predicted to be class “Neg One” when the cases were actually class 

“One” (i.e. 285 cases were incorrectly classified as “Neg One”) 

o These 285 cases are sometimes referred to as “false negatives” 

 

• 83 cases were predicted to be class “One” when the cases were actually class “Neg One” 

(i.e. 83 cases were incorrectly classified as “One”) 

o These 83 cases are sometimes referred to as “false positives” 

 

• 1,806 cases were predicted to be class “One” when the cases were actually class “One” 

(i.e. 1,806 cases were correctly classified as “One”) 

o These 1,806 cases are sometimes referred to as “true positives” 

The threshold value is 0.70. This means that a case is predicted to be the focus class (i.e. the predicted 

class on the right which in this case is class “One”) if the predicted probability for the focus class is greater 

than or equal to 0.70. You can adjust the threshold and observe the impact on the confusion matrix.   
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Interpretation: Row % 

 

Clicking the Row % button shows a percentage breakdown of the actual class in terms of the predictions 

and the resulting values in the confusion matrix above. Note that interpretation below depends on the 

value of the threshold which is described in the Interpreting the Confusion Matrix: Count section. Also, the 

values used in the calculations below are count values and can also be found in this section. 

91% of the test sample cases that are actually class “Neg One” were predicted to be “Neg 

One” (i.e. this is the true negative percentage = specificity rounded to the nearest percent)  

𝟖𝟐𝟔

𝟖𝟐𝟔 + 𝟖𝟑
∗ 𝟏𝟎𝟎 = 𝟗𝟎. 𝟖𝟔𝟗% ≈ 𝟗𝟏% 

9% of the test sample cases that are actually class “Neg One” were predicted to be “One” 

(i.e. this is the false positive percentage = 1-specificity rounded to the nearest percent)  

𝟖𝟑

𝟖𝟐𝟔 + 𝟖𝟑
∗ 𝟏𝟎𝟎 = 𝟗. 𝟏𝟑% ≈ 𝟗% 

86% of the test sample cases that are actually class “One” were predicted to be “One” (i.e. 

this is the true positive percentage = sensitivity rounded to the nearest percent) 

𝟏𝟖𝟎𝟔

𝟐𝟖𝟓 + 𝟏𝟖𝟎𝟔
∗ 𝟏𝟎𝟎 = 𝟖𝟔. 𝟑𝟕% ≈  𝟖𝟔% 

14% of the test sample cases that are actually class “One” were predicted to be “Neg One” 

(i.e. this is the false negative percentage = 1-sensitivity rounded to the nearest percent)  

𝟐𝟖𝟓

𝟐𝟖𝟓 + 𝟏𝟖𝟎𝟔
∗ 𝟏𝟎𝟎 = 𝟏𝟑. 𝟔𝟑% ≈  𝟏𝟒% 
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Interpretation: Column % 

 
 

Click the Column % button to see a percentage breakdown of the predicted class in terms of the actual 

class values and the resulting values in the confusion matrix above. Note that interpretation below depends 

on the value of the threshold which is described in the Interpreting the Confusion Matrix: Count section. 

Also, the values used in the calculations below are count values and can also be found in this section.  

 

74% of the test sample cases that are predicted to be “Neg One” are actually class “Neg 

One”  

𝟖𝟐𝟔

𝟖𝟐𝟔 + 𝟐𝟖𝟓
∗ 𝟏𝟎𝟎 = 𝟕𝟒. 𝟑𝟒𝟕% ≈ 𝟕𝟒% 

26% of the test sample cases that are predicted to be “Neg One” are actually class “One” 

𝟐𝟖𝟓

𝟖𝟐𝟔 + 𝟐𝟖𝟓
∗ 𝟏𝟎𝟎 = 𝟐𝟓. 𝟔𝟓% ≈  𝟐𝟔% 

4% of the test sample cases that were predicted to be “One” are actually class “Neg One”  

𝟖𝟑

𝟖𝟑 + 𝟏𝟖𝟎𝟔
∗ 𝟏𝟎𝟎 = 𝟒. 𝟑𝟗𝟑% ≈ 𝟒% 

96% of the test sample cases that were predicted to be “One” are actually class “One”  

𝟏𝟖𝟎𝟔

𝟖𝟑 + 𝟏𝟖𝟎𝟔
∗ 𝟏𝟎𝟎 = 𝟗𝟓. 𝟔𝟎% ≈  𝟗𝟔% 
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Interpretation: Specificity, Sensitivity/Recall, Precision, and F1 statistic 

 

 

For binary targets we provide values for Specificity, Sensitivity/Recall, Precision, and F1 statistic. 

These values are shown for the Focus class specified in the Focus Class combo box and the threshold 

value specified (see the next page for a description of the threshold). 

Sensitivity/Recall Probability for the Focus class cases to be 

classified by the model as Focus class 

ones. Computed as number of correctly 

classified Focus class cases divided by 

total number of Focus class cases in the 

dataset. This measure is also known as 

Recall. 

Specificity Probability for the non-Focus class cases 

to be classified as non-Focus class ones. 

Computed as number of correctly 

classified non-Focus class cases divided 

by total number of non-Focus class cases 

in the dataset. 

Precision Computed as number of correctly 

classified Focus class cases divided by 

total number of cases classified as Focus 

class. 

F1 statistic  2 x Precision x Recall / (Precision + 

Recall) 
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Hosmer-Lemeshow tab 

✓ This is a binary classification-only feature. 

This tab shows the results of Hosmer-Lemeshow goodness of fit test for binary classification models. 

Responses from model are binned into ten deciles and several statistics are computed for each bin.  

For a given bin i Chi squared component is computed by the following formula. 

𝑋𝑖
2 =

(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖)2

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 ∙ (1 −
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖

𝑛𝑖
)
 

Under the table we show the Total Chi-Square value (sum of Chi-Sq statistics per each bin) and P-value 

of Hosmer-Lemeshow statistics (HL Stat. P-value) under the grid. The null hypothesis of the Hosmer-

Lemeshow Test is that the model fits the data well whereas the alternative hypothesis is that the model 

does not fit the data well.  

 

✓ For a binary target, the choice of Focus class does not affect the essence of the results. 

Response Observed 
Sum of Case Weights for Focus Class observations in the 

bin. 

Response Expected 
Sum of Model responses for Focus Class observations in 

the bin. 

Non-Response Observed 
Sum of Case Weights for non-Focus Class observations in 

the bin. 

Non-Response Expected 
Sum of Model responses for non-Focus Class observations 

in the bin. 
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Avg. Observed Prob. 
Response Observed divided by sum of Case Weights of 

all observations in the bin. 

Avg. Predicted Prob. 
Response Expected divided by sum of Model responses 

for all observations in the bin 

Chi-Sq Component 
Contains Chi squared component computed by formula 

described above 

Log Odds Observed 
Log from Avg. Observed Prob. divided by  

(1 – Avg. Observed Prob.) 

Log Odds Predicted 
Log from Avg. Predicted Prob. divided by 

 (1 – Avg. Predicted Prob.) 

Records in Bin Number of cases in the bin 

% Records in Bin Percent of cases in the bin from total number  in sample 

You can switch between the following alternative breakdowns of records into bins (see picture on 

the previous page) 

• Equal width – each bin is populated with cases with predicted probabilities in the range of a decile 

(e.g. a decile of probabilities between 0.1 and 0.2). 

• Balanced – each bin has the same sum of Case Weights.  

 CART uses nodes as bins so this condition cannot be satisfied exactly. 
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Odds Graph tab 

✓ This is a binary classification-only feature. 

Odds graph visualizes the Hosmer-Lemeshow table as a chart. 

 

The chart supports the following modes. 

Counts button – shows just raw sum of weights for cases predicted as focus class (Response\Non-
Response Expected rows). 

Ratio button – shows ratio of Response Expected divided to Non-Response Expected. 

Log Y button switches Y-axis between normal and logarithmic scales.  
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Score Distribution Tab 

 

In the Score Distribution Tab, user can monitor the spread of predicted probabilities (or scores) that may 

be too tight in some TreeNet models. Such models rank order well, but do not accurately capture 

probabilities. This result can be repaired by growing more trees or requesting optional recalibration. See 

section on Using Logistic Calibration on TreeNet Results for this option. 
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Display Plots Button: Viewing PDPs 
In TreeNet® software you can specify that partial dependency plots (PDPs) are created before the model 

is built (see the Plots & Options Tab section above; we discuss how to create PDPs after the model is 

built in the Create and Viewing Dependency Plots section). To view the partial dependency plots click 

the “Display Plots...” button (see red rectangle below)  

 

After you click the Display Plots… button you will see the following menu.  
 

View All Plots  

 

Click Show All to display all plots (this may take a while if you requested many plots; see the Warning: 

Number of PDPs section for information on the number of plots generated)  

Click Close All to close all plots. 
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View All One (or Two) Variable PDPs Only  
 Click either one of the “plus” signs + for the one or two variable partial dependency plots in the orange 
rectangle below: 

 

Click the other plus sign (blue rectangle below) to expand the list of variables with one variable PDPs: 

 

Click the Trees = 200 (Optimal) label to view all one variable PDPs or click the name of an individual 

variable to view a partial dependency plot (any name in the green rectangle above) for a single variable. 

Here is the result of clicking Trees = 200 (Optimal): 
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All One Variable PDP Plot Controls 

 

Rank Order– “de-scales” the horizontal axis such that all sampled points are spaced uniformly. 

This helps viewing “congested” areas of plots, especially when outliers are present. 

Trim Plots– truncate plot tails usually due to outliers. 

Line– view the PDPs as shown in the picture above.  

Specify & Code–controls for spline approximations to the partial dependency plot (see the Spline 

Approximations section below for more details). 

Scatter– view individual points that were sampled in plots construction. This is useful in identifying 

possible outliers or “empty” areas of data. 

 
Y-Axis: Same Scale– imposes an identical scale on all vertical axes and allows you to see the 

comparative effect of different variable contributions.  

X-Axis: All Values or Zoomed– zoom in on the x-axis if desired (Zoomed option); otherwise 

the “All Values” option that is shown above will be used.  

Goto Variable – use to navigate directly to the partial dependency plot of a particular variable of 

interest. This is especially useful when there a large number of predictors (in that case 

searching through all of the plots can be quite tedious).  
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View an Individual PDP 
1. Click the desired variable name in the Plot Selection setup (green rectangle below) after clicking 

the desired plus signs +. 

 
 

2. Double click on the desired plot if viewing all PDPs (red rectangle below; this is applicable when 
viewing either all one variable plots or all two variable plots). 
  

 

The result of using either (1) or (2) is the following: 
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Partial Dependency Plots (PDPs) 

Partial dependency plots represent a very powerful interpretational side of TreeNet. They were designed 

to help understand how individual variables or pairs of variables contribute to the predicted response 

once the effects of all remaining predictors have been accounted for. 

Depending on the complexity of a TreeNet model, the plots can be either exact or at the very least 

provide useful visual approximations to the nature of dependencies. The former case arises for truly 

additive models or models with completely isolated interacting pairs of variables, for example, utilizing the 

ICL language introduced later in this manual. 

 

Constructing One Variable PDPs 

As an example, let’s say that we have built a TreeNet model and we want to construct a partial 

dependency plot for a predictor variable X1. To generate the partial dependency plot for X1 we follow the 

following steps: 

7. Randomly select a record 

8. Plug the record from Step 1 into the model. This produces a predicted value 

9. Hold all values for all variables in the record constant except change the value for X1. Plug this 
new artificial record into the model which produces a predicted value. 

a. By “change the value for X1” we mean just use other values occurring in the data 

10. Repeat Step 3 for every unique value of X1. This generates multiple predicted values which are 
plotted against the variable X1 and then connected to form one curve.  

11. Repeat Steps 1-4 many times (the default in SPM is 500). This produces multiple curves.  

12. Average and center the curves to get the partial dependency plot for the variable X1.  

This process is illustrated in the picture below: 
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Constructing Two Variable PDPs 

To construct two variable partial dependency plots we follow the same procedure discussed above in the 

Constructing One Variable PDPs section except that we now have two variables and when we plot we 

now have a surface instead of a line. As an example, let’s say that we have built a TreeNet model and we 

want to construct a partial dependency plot for predictor variables X1 and X5. To generate the partial 

dependency plot for X1 and X5 we follow the following steps: 

1. Randomly select a record 

2. Plug the record from Step 1 into the model. This produces a predicted value 

3. Hold all values for all variables in the record constant except change the value for X1 and X5. 
Plug this new artificial record into the model which produces a predicted value. 

a. By “change the value for X1 and X5” we mean just use other values that occur for X1 and 
X5 in the data 

4. Repeat Step 3 for every unique combination of X1 and X5. This generated multiple predicted 
values which are plotted against both X1 and X5 to form one surface. 

5. Repeat Steps 1-4 many times (the default in SPM is 500). This produces multiple surfaces.  

6. Average and center the surfaces to get the two-variable partial dependency plot for the variables 
X1 and X5.  
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Interpreting PDPs: Binary Classification  
 

Binary Classification & Continuous Predictors 

 

In this example our target variable is a variable called Y2. Y2 can take two values: 0 or 1, so this is a 

binary classification problem. The predictor variable is a continuous variable called X1. The Y-axis for 

partial dependency plots in the case of binary classification is the average 
𝟏

𝟐
 log-odds of the event 

(the user defines the event class and this is referred to the “Focus Class”; see this link for more details). 

The dotted lines and rectangles shown in the picture were created outside of TreeNet software. 

Interpretation:  

If X1 increases from 1 to 1.5 then the 
1

2
 log-odds of the event, on average, decreases by 1.51 

(because -1.51= -1.087 - .423). 

See the picture above. Click the “Markers” button above to display the dotted blue line 

shown in the picture. The dotted blue line has a pair of coordinates (x-value, y-value) 

that allow you to obtain the values used in the calculation -1.51= -1.087 - .423. 

 

If X1 increases from .15 to .864, then the 
1

2
 log-odds of the event, on average, does not change. 

If X1 decreases from -.5 to -1, then the 
1

2
 log-odds of the event, on average, increases by 1.628 

(because 1.628 =.424 – [-1.204]). 

 

.423 

-1.087 
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Binary Classification & Categorical Predictors  

 

 

In this example the target variable is a variable called Y2. Y2 can take two values: 0 or 1, so this is a 

binary classification problem. The predictor variable is a categorical variable called Z2 (the dollar sign $ 

denotes that Z2 is categorical variable). Z2 takes three values: “ONE”, “ZERO”, and “minusONE”. The Y-

axis for partial dependency plots in the case of binary classification is the average 
𝟏

𝟐
 log-odds of 

the event (the user defines the event class and this is referred to the “Focus Class”; see this link for more 

details). 

Interpretation 

If Z2 = “ONE”, then the 
1

2
 log-odds of the event, on average, increases by .8 after accounting for 

the other variables in the model. 

If Z2 = “ZERO”, then the 
1

2
 log-odds of the event, on average, decreases by .35 after accounting 

for the other variables in the model. 

If Z2 = “minusONE”, then the 
1

2
 log-odds of the event, on average, increases by .82 after 

accounting for the other variables in the model. 

 

 

   

.8 

-.35 

.82 
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Interpreting PDPs: Multinomial Classification 
Let’s suppose that we have a target variable Y with K categories and we want to predict the category of Y 

based on the values of the predictor variables. This type of problem is commonly referred to as a 

multinomial classification problem. The gradient boosting algorithm for multinomial classification problems 

involves fitting K binary classification models. As an example, let’s say the target variable is a categorical 

variable with 5 values: red, green, blue, yellow, and orange. To build a multinomial TreeNet model we 

build the following 5 binary TreeNet models: Red vs. Not Red, Green vs. Not Green, Blue vs. Not Blue, 

Yellow vs. Not Yellow, Orange vs. Not Orange. The predicted class (i.e. red, green, blue, yellow, or 

orange) is the class that has minimizes the model error or cost.  

In the context of partial dependency plots for multinomial classification problems, we will have K plots for 

each variable with each plot corresponding to an individual binary classification problem (like Red vs. Not 

Red or Blue vs. Not Blue). 

Multinomial PDPs & Continuous Predictors 
 

 

The four PDPs above are for a continuous predictor X1 and a multinomial target variable Y3. Y3 can take 

4 values: 1, 2, 3, or 4, so this is a multinomial classification problem where we fit K=4 models: 1 vs. Not 1, 

2 vs. Not 2, 3 vs. Not 3, and 4 vs. Not 4 (notice the plot labels in the top middle such as “One Predictor 

Dependence For Y3 = 1” etc.).  

The Y-axis for partial dependency plots in the case of multinomial classification is still the average 
𝟏

𝟐
 log-odds of the event (in the plots above you can see the event class in the top middle of each plot: 

“One Predictor Dependence for Y3 = 3”). On the next page we interpret the Partial Dependency Plot for 

Y3 = 4 (plot in the lower right corner in the picture above) 
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Interpretation Example 

 

 

In this example our plot is for a model for classifying the target variable Y3 as a “4” or “Not 4,” so this is 

(still) a binary classification problem (we know that this is for the problem Y3 =4 vs Not 4 because at the 

top of the plot we can see the label “One Predictor Dependence For Y3 = 4”). The predictor variable is a 

continuous variable called X1. The Y-axis for partial dependency plots in the case of binary 

classification is (still) the average 
𝟏

𝟐
 log-odds of the event (in this case the event is Y3 = 4).  

Interpretation: 

If X1 increases from -5. to .5,then the 
1

2
 log-odds of Y3 =4 (versus Y3 not being equal to 4), on 

average, increases by 3.732 (because 3.732 = 2.447 – [-1.285]). 

See the picture above. Click the “Markers” button above to display the dotted blue line 

shown in the picture. The dotted blue line has a pair of coordinates (x-value, y-value) 

that are used in the calculation -1.51= -1.087 - .423. 

 

The interpretation for the predictor variable X1 for Y3 =4 (vs. Y3 not equal to 4) is the similar to the 

interpretation for the binary classification model because fundamentally a multinomial classification model 

is multiple binary classification models.  The interpretation for the other three PDPs for the predictor X1 

will have an interpretation similar to the one here.  

 

 

 

2.447 

-1.285 
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 Multinomial PDPs & Categorical Predictors 

 

In this example the target variable is a variable called Y3. Y3 can take 4 values: 1, 2, 3, or 4, so this is a 

multinomial classification problem where we fit K=4 models: 1 vs. Not 1, 2 vs. Not 2, 3 vs. Not 3, and 4 vs. 

Not 4. The predictor variable is a continuous variable called X1. 

The Y-axis for partial dependency plots in the case of multinomial classification is still the average 
𝟏

𝟐
 log-odds of the event (in the plots above you can see the event class in the top middle of each plot: 

“One Predictor Dependence for Y3 = 3” and so on). 

On the next page we will interpret the Partial Dependency Plot for Y3 = 4 (plot in the lower right corner in 

the picture above) 
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Interpretation Example 

 

 

In this example our plot is for a model for classifying the target variable Y3 as a “4” or “Not 4,” so this is 

(still) a binary classification problem (we know that this is for the problem Y3 =4 vs Not 4 because at the 

top of the plot we can see the label “One Predictor Dependence For Y3 = 4”). The predictor variable is a 

categorical variable called Z1$ (the dollar sign $ means that Z1 has character values). The Y-axis for 

partial dependency plots in the case of binary classification is (still) the average 
𝟏

𝟐
 log-odds of the 

event (in this case the event is Y3 = 4 (vs. Y3 Not Equal to 4) ).  

Interpretation: 

If Z1 has a value of “ONE” then the 
1

2
 log-odds of Y3 =4 (versus Y3 not being equal to 4), on 

average, decreases by approximately .55  

If Z1 has a value of “THREE” then the 
1

2
 log-odds of Y3 =4 (versus Y3 not being equal to 4), on 

average, increases by approximately .78 

If Z1 has a value of “TWO” then the 
1

2
 log-odds of Y3 =4 (versus Y3 not being equal to 4), on 

average, increases by approximately .20 

If Z1 has a value of “ZERO” then the 
1

2
 log-odds of Y3 =4 (versus Y3 not being equal to 4), on 

average, decreases by approximately 1.32 

The interpretation for the predictor variable X1 for Y3 =4 (vs. Y3 not equal to 4) is similar to the 

interpretation for the binary classification model because fundamentally a multinomial classification model 

is multiple binary classification models.  The interpretation for the other three PDPs for the predictor Z1 

will have an interpretation similar to the one here.  
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Spline Approximations to the PDPs 

Users have the option to produce spline approximations to the one variable partial dependency plots for 

continuous predictor variables. See the Spline Approximations to the Partial Dependency Plots section for 

more information.  

 

Create Plots 
TreeNet has a powerful facility to generate partial dependency plots for any variable or pair of variables 

and any model size selected by the user. Click the Create Plots… button in the TreeNet output window 

(this is only available for most recent TreeNet modeling run). See the Create Plots Button section for 

more information. 
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Spline Approximations to Partial Dependency Plots 

Users have the option to produce spline approximations to the one variable partial dependency plots for 

continuous predictor variables. The plot approximation machinery was designed to facilitate model 

extraction based on TreeNet model insights. The idea is that each dependency plot represents a variable 

transformation; therefore, once a variable is transformed it can be used in the conventional regression 

modeling as a main effect. Note that the transformation becomes exact in the absence of interactions in 

which case the TreeNet engine can be used as an ultimate transformation discovery machine. 

Plot approximations replace the internally constructed partial dependency plots by simple analytical 

expressions calculated to have the best fit to the partial dependency plot of interest. 

By far, the spline approximations are the most flexible to accomplish this task. Each spline is defined by a 

set of knots (points on the horizontal X-axis) and its order (first-order spline for piece-wise linear segments 

and second-order splines for the smooth quadratic segments). The internal calculations ensure the 

continuity and/or the smoothness of the spline approximation. 

The spline controls are located below the plot (red rectangle below) and are explained in detail on the 

next page. The following view of a partial dependency plot can be obtained in a number of ways (see the 

View an Individual PDP section).  

✓ There is no approximations facility for the bivariate plots due to their natural complexity. 

✓ There is no command line support for the approximations. 
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Manual Knot Placement 

 

Two Options to Add Your Own Knots 

1. To add a knot, position the vertical slider (the vertical slider is the blue dotted line near the middle 

of the picture above) at the point of interest and click the Select Current button  

a. Note: click the Unselect Current button to deselect the current point of interest or the 

Reset All button to remove all current knots. 

2. Double clicking on the desired knot location on the curve.  

Note that each added knot is represented by a vertical green dotted line (see the picture above). You can 

use the mouse pointer to move the existing knots left or right to achieve fine adjustment of the spline fit. In 

the example above, we show a two-knot spline solution to the X2 partial dependency plot.  

Splines Section 

1. Monotonic Control: enforce monotonicity constraint (Up, Down, or None) on the spline solution.  

2. Smooth Ratio Control: enforce additional smoothness on the spline solution. 

Type Section 

1. Standard vs. Integral spline type control is no longer supported. All splines are now integral spline 

because of their superior characteristics. 

2. First Order button: By default, second-order splines are calculated. Press the First Order button 

to replace second-order splines with the first-order splines. 

3. Linear button: adds a linear approximation to the plot. 
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Automatic Knot Placement & Fixed Approximations 

 

If you want SPM to determine the knot location automatically or to specify parametric approximations to the 
partial dependency plots then press the “Specify…” button. Clicking this button results in the following 
menu: 

 

Check the “Splines” checkbox and specify the desired Number of Knots and modify the other spline 
controls in the blue rectangle above (the other settings are discussed in the Adding Your Own Knots 
section). To approximate the partial dependency plot with a parametric form then click any of the 
checkboxes in the pink rectangle above. Here we have checked the Polynomial checkbox and 
specified a degree of 2. The spline approximation with 3 knots and the degree 2 polynomial 
approximation will be overlaid.  

Click the “Ok” button or the “Apply” button to approximate the plot with the spline. Click “Reset All” to 
remove all splines created for the plot. 
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The result of clicking the “Ok” button is the following. The spline with the three automatically added knots 

is in green and the degree 2 polynomial spline is in light blue.  
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Using Splines Approximations in a Model  

 

In this example, we approximate this plot with a spline that has three knots.  

1. Click the “Specify” button (red rectangle above). Upon clicking the “Specify” button you 
will see the following menu.   

 

Click the “Splines” checkbox and set the Number of Knots to 3 then click Ok.  
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The result of clicking the “Ok” button is the following: 

 

In the picture above notice that the three dotted lines correspond to the knot placement (we set 

the number of knots to 3 in the spline setup). To create, save, and add a spline approximation to 

the list of predictor variables that can be in the model, click the “Code” button above which 

results in the following window with SPM Basic Code 

 

Save: save the code in a command file (only active when SAS is the code format)  

Submit: submit the code directly to the command prompt in the Classic Output window 

Submit & Save: save the new (and original) variables into a new dataset. 

Submit & Keep: submits the SPM Basic code shown above (green rectangle above; this code 

creates the spline variable in SPM) and then automatically adds this new spline variable to the 

list of available predictors in the model.  Click “Submit & Save”  

Include All Important Variables checkbox to add the other important variables in the TreeNet 

model to keep list in addition to the new spline variable.  
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After you click the “Submit & Keep” button in the picture above, an SPM Notepad opens and 

allows you to submit commands to SPM: 

 

Notice the X2_S (red rectangle above) in the KEEP list. X2_S is the spline approximation to 

the partial dependency plot. Click into this window and press CTRL W to submit this command.  

The result of the command  
KEEP X2_S, Z1$, Z2$, X1, X3, X4, X5, X6, X7, X8, X9, X10  

is that all variables in the list, including the spline approximation to the partial dependency plot 

X2_S, are now set as predictors in a model. If you go back to the model setup you can see the 

result: 

 

✓ X2_S1, X2_S2, and X2_S3 (blue rectangle above) are used in the construction of the final spline 
variable X2_S.  Only X2_S should be included as a predictor in the model as shown in the blue 
rectangle above. 

✓ A popular use of these controls is to use TreeNet spline approximations as predictors in a standard 
logistic regression scenario. Nonlinearities are captured in the splines while traditional regression 
reporting is preserved. You can build a logistic regression model by changing the Analysis Engine (red  
rectangle above)  
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Simultaneous Spline Approximations 

You can generate approximations for all univariate graphs simultaneously by clicking the Specify … 
button on the one variable dependence window (see View All One (or Two) Variable PDPs Only section 
for more information about seeing all one-variable partial dependency plots in a single window). To let 
SPM determine the optimal knot placements, click the Splines checkbox, specify the number of knots 
to be 3, and click the OK button.   

 

The result of clicking the OK button is a spline approximation for every numeric partial dependency plot. 

Notice that each numeric plot now has a green spline approximation overlaid on the original plot in 

blue:  
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Create Plots Button 

TreeNet has a powerful facility to generate partial dependency plots for any variable or pair of variables 

and any model size selected by the user. Click the Create Plots… button in the TreeNet output window 

(this button is only available for most recent TreeNet modeling run): 

 

Create Plots Tab 

 

 

Nr. of trees: number of trees that you want the plots to be based on 

Training Sample & Test Sample: training and test sample error statistics for Least Absolute Deviation 
(LAD) and Least Squares (LS) 

Optimal Tree button: sets the Nr. of trees to the number that corresponds to the optimal model 

Select button: sets the Nr. of trees to be the size desired by the user and chosen based on clicking on 
the model error curve that appears. 
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One variable dependence checkbox: create one variable partial dependency plots  
 Points: number of records used in constructing the one variable PDP 
 
Two variable dependence checkbox: create two variable partial dependency plots 
 Points: number of records used in constructing the two variable PDP 
 

Centered: center the plots (the button is currently selected so the plots will be centered) 

 

Number of existing plots: number of plots currently available view (you can specify that TreeNet create 
partial dependency plots automatically after TreeNet finishes its run; see the Plots & Options Tab section 
of this document) 

Clear Existing: remove all plots available to be viewed 
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Select Variables To Plot: click any variable to generate plots for (hold the CTRL key or the SHIFT key if 

selecting multiple variables) and then click the Select button to add these variables to the list of variables 

for which plots are to be generated 

 

Use Top ___ Variables: check the checkbox and specify the top number of variables to see PDPs for. 

The variable list (blue rectangle above) can be sorted by either the (relative) variable importance score 

or a variable’s whole variable interaction score depending on whether you click the Importance button or 

the Interactions button (see the Whole Variable Interaction Score Report section and/or the Variable 

Importance Tab section for more details on the computations of these values).  

 

Including ___ interacting: check the checkbox and specify the top number of variables based on their 

global interaction score.  

 

Importance: selected in the picture; sort the variables by their relative variable importance score (see the 

Variable Importance Tab section for more information)  

 

Interactions: not selected in the picture; sort the variables by their “Global Score” value (see the 

Interpreting the 2-Way Interaction Report section for more information)  

 

Select: highlight the desired variables on the left (blue rectangle above) and click “Select”. The variables 

will appear in the box on the right. 

 

Select All: all variables will appear in the box on the right 

 

Remove: click a variable name in the box on the right and then click the Remove button to remove the 

variable 

Remove All: all variables will be removed from the box on the right  
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Pairwise Interactions Tab 
The Pairwise Interactions Tab allows user to directly request two-variable partial dependency plots 

based on the interaction scores.  

 

Score Global (on the % scale) shows the contribution of the suspected interacting pair normalized to the 
overall response surface (total variation of the predicted response). A value of 3.56915 means that the 
interaction between X2 and X3 accounts for 3.56915% of the total variation in the predicted 
response. Note: a value of zero means that the interaction under consideration has no effect on the overall 
model. 

Score Local (on the % scale) shows the contribution of the suspected interacting pair of variables 
normalized to the two-variable partial dependency function of the pair of variables under consideration (two 
variable partial dependency functions are used to generate the two-variable partial dependency plots). A 
value of 15.19559 means that 15.19559% of the variation in the two-variable partial dependency plot 
for X2 and X3 is explained by the interaction between X2 and X3. Note: a value of zero means that 
there is no interaction between the two variables under consideration (see the Interpreting the 2-way 
Interaction Report section for more information on Score Global and Score Local) 

To generate two-variable partial dependency plots click the checkbox(es) corresponding to the desired 
pair of variables and then click the Create Plots button. Upon clicking the Create Plots button the plot 
will be constructed (if you request a large number of plots then this may take a while) and you will be shown 
the following menu. Click the plus signs and double click on the pair of variables that you requested the plot 
for (in this case X2 and X2: pink rectangle below). After double clicking you will be shown the plot.  
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Example: Top Interacting Plots for the 100 Tree Model 
Let’s assume you have built a TreeNet model and you want to view 2 partial dependency plots for the top 

5 interacting variables for the TreeNet model with 100 trees.  

Click the Create Pots… button below: 
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You will see the following menu. Click the Select… button to see the error curve below. Click anywhere 

along the curve that you wish to see Partial Dependnecy Plots (PDPs) for and then click the OK button. 

In the picture below, the number of trees is set to 100 (see the pink arrow pointing to the red dotted line). 

To view PDPs for the optimal tree then click the Optimal Tree button.  

 

 

 

After you click the OK button you will see that the Nr. of trees has been set to 100. To view the one-

variable dependency plots and two-variable dependency plots click the desired checkboxes. 
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Click the Interactions button and then click the Use top checkbox and set the number of variables to 

5. You will see 5 variables appear in the right panel. Click the Create Plots button to build the partial 

dependency plots. Notice that 78 plots currently exist so you will have the option of viewing the plots 

specified here in addition to the plots already created.  

After you click the Create Plots button the requested plots will be constructed and you will see the 

following menu (***Note: requesting a large number of plots may take a while for them to be constructed):   

 

Click the plus signs + to expand the options and notice that we can view plots for two models: the optimal 

model with 200 trees (black square above; this was created automatically after the TreeNet run) and the 

100 tree model (this is what we specified in the steps earlier in this example). To view an individual plot, 

double click the variable name in the desired section. To view all of the one or two variable plots for the 

100 tree model double click the “Tree=100” label (highlighted in blue; next to the green square) or 

“Trees=200 (Optimal)” label.  

This is the result of clicking “Trees=100” in the two variable dependence section: 
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These are the two variable partial dependency plots for the 100 tree model.  

Viewing Results for Non-optimal Trees 

The optimal model(s) are always accompanied by a comprehensive set of diagnostics, reports and graphs. 

In addition, TreeNet includes complete reports for select other models and partial reports for all models. In 

the case of regression, complete reports are always available for two potentially different models: the model 

with the number of trees yielding the optimal Least Squares, and the model containing the number of trees 

yielding the optimal LAD. A partial model summary is computed for all models but contains only core 

performance measures and the variable importance ranking. You may select any model by pressing the 

<Ctrl> + arrow keys. 

✓ It is possible to increase the number of models with full summaries in the TN Advanced tab of the Model 
Setup dialog. 

 Requesting too many complete summaries might result in a significant program slowdown and may 
cause memory problems. Remember that each model might require 50 to several hundred graphs and 
if you save them all for 2000 models you can easily bog down your machine. 
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Commands 

 

Every time you click a setting in SPM a corresponding command is created. The commands 

allow you to create scripts that you can run in SPM perform a variety of tasks including building 

models, preparing data, performing experiments, and more. Clicking the Commands… button 

above will show the commands used to generate the TreeNet model as well as the commands 

leading up to the creation of the model like reading in data, computing summary statistics, and 

the creation of past models: 
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Translating TreeNet Models 
You have the option of translating TreeNet models into 4 languages: C, PMML, Java, and SAS 

compatible code. You can also output the classic output contents to a file, the history, the rules in the 

TreeNet model, or plot data.  

 

Click the Translate… button to open the Model Translation menu: 
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Example: Translating the Optimal TreeNet into Java Code 
1. Click the Java radio button 
2. Click the Save Output As… checkbox and specify a file path to save the translation 

code. 
3. Click the Optimal button if you want a translation for the model with the optimal number 

of trees; otherwise click the Select… button and select the number of trees desired.  
4. Click the OK button to translate the model.  

 

5. Here is a snapshot of the file that is located in the file path defined in Step 2: 
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Example: Translating a Non-Optimal Model into C code 
1. Click the C radio button 
2. Click the Save Output As… checkbox and specify a file path to save the translation code 
3. Click the Optimal button if you want a translation for the model with the optimal number of 

trees; otherwise click the Select… button and select the number of trees desired.  
a. Here we will click the Select… button so that we can select a model with a non-optimal 

number of trees.  
b. To select a non-optimal number of trees, click the desired row and note that each row 

corresponds the number of trees in the model (we call this Sequence tree #).  
c. In this example, we will click the row for the model with 190 trees and then click the 

Select button (black rectangle in the picture below). 
4. Click the OK button to translate the model 

 

 

5. Here is a snapshot of the file that is located in the file path defined in Step 2. Note that the 
number of trees is 190 as selected in the step above.  
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Example: Translating the Rules to a .dat file 
1. Click the Rules radio button. 
2. Click the Save Output As… checkbox and specify a file path to save the translation code. 
3. Click the Optimal button if you want a translation for the model with the optimal number of 

trees; otherwise click the Select… button and select the number of trees desired. 
4. Click the OK button to translate the model. 

 
 

5. Here is a snapshot of the file that is located in the file path defined in Step 2.  
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Saving TreeNet Models: Grove File 

 

Any time during model setup, you can use the Save Grove… button to save the currently active TreeNet 

model to a grove file. The grove file, a binary file that contains all the information about the TreeNet model, 

must be saved if you want to apply the model to a new data set or translate the model into one of the 

supported languages at a later time. 

After the Save Grove… button is pressed, the Specify Grove File dialog window appears: 

  

Type in the name of the grove file to be created and click the [Save] button. 

 The grove file is created on your hard drive only after the model-building process is completely finished. 
You cannot create more plots using interactive GUI controls after you save the model. 

✓ You can also save the grove file from the Results window (see below) after the run is finished. 
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Scoring TreeNet Models (Generate Predictions) 
Scoring refers to the generation of predictions for a specific model on new data or data used to build the 

model.  

 

You can score a TreeNet model directly from an open grove (TreeNet Output window) by clicking the 

Score…button. After clicking the Score… button you will see the Score Data menu: 
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General Tab 

 

Click the Open Data File… button and specify the dataset that you would like to generate predictions for. 

Click the Open Grove File… button if you want to generate predictions using a previously saved model. 

Click the Select model to score dropdown box to select the model you want to use to generate. 

predictions (only applicable if the model is currently open in SPM) 

Click the Save Score As… checkbox to specify a save location for the predictions. 

Click the Save all model related values checkbox to save all values related to the model. 

Click the Save all Variables on input dataset to score dataset checkbox if you want to save the 

predictor variables to the dataset with the predictions. 

Click the Save Grove As… button if you want to save the recently built model that you want to score. 
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Click the Select… button to select the TreeNet model size (i.e. number of trees which is referred to 

above as “Sequence tree #”) to be used to generate predictions. The default number of trees is the 

number that corresponds to the optimal model and is highlighted in green (the pink arrow above points 

to the highlighted row). To select a model size that is different from the optimal model, click the desired 

row. In the picture above, the row corresponding to a TreeNet model with 189 trees has been clicked (red 

rectangle above). Click the Select button to finalize this choice. Notice that the model now selected is 

the one with 189 trees (see the black rectangle in the picture below). 
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The variables listed on the left (black rectangle above) are the variables contained in the dataset that 

was specified after clicking the Open Data File… button.  

Click the target variable name and then click the Select button to set this variable as the target variable. 

If your dataset does not have a target variable then do nothing (the predictions will still be generated, but 

you will not see model scoring statistics).  

If you have a case weight variable, then click the variable name from the list on the left (black rectangle 

above) and then click the Select button to set this variable as the Weight Variable.  

If you have a treatment variable, then click the variable name from the list on the left (black rectangle 

above) and then click the Select button to set this variable as the Treatment Variable. 

If you have an ID variable(s), then click the variable name(s) from the list on the left (black rectangle 

above) and then click the Select button to set this variable as the ID variable.  

Click the Cancel button to exit this menu without saving the settings.  

Click the Continue button to exit this menu and save the settings. 

Click the Score button to generate predictions for the dataset specified after clicking the Open Data 

File… button. 
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Select Cases Tab 

The Select Cases tab allows users to define a filter for the observations that have predictions generated.  

 
In the example above we have defined a filter with two conditions: X5 > 2 and X5 <> 3 (i.e. X5 is not 

equal to 3). If you click the Score button with this filter defined then the only cases that have a predicted 

value are those observations whose value for X5 is greater than 2 and X5 is not equal to 3. See the 

Select Cases Tab section for more information about the Select Cases functionality. 
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Generating Predictions for Learn and Test Partitions 
Sometimes it is desirable to see the predicted values for the cases that were used in the Learn sample 

and Test sample. To accomplish this click the Score… button 

 

After you click the Score… button you will see the Score Data setup menu: 

 

To specify the save location for the model predictions by clicking the Save Score As… checkbox. Also, 

click the Save all model values checkbox and if you wish to save the predictor variables along with the 

predictions then click Save all variables on input dataset to score dataset. Specify the target variable 

by clicking Y2 (purple rectangle below) and then clicking the Select button for the Target Variable section. 

Click the Continue button to save the settings. 
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Now we need to tell SPM to preserve the Learn and Test sample partitions used in the model. This is 

accomplished using the SPM command line. To navigate to the SPM command line click  

Window > Classic Output Window 

 

After clicking “Classic Output,” the Classic Output Window will appear. Click into the Classic Output Window 

and type the following two commands (SPM is not case sensitive). Press ENTER after typing each 

command.  

SCORE PARTITIONS=YES 

SCORE GO  

 

Your screen will look similar to the following (both commands are highlighted in yellow below) 

 

 

 

The SCORE PARTITIONS=YES command tells SPM to preserve the learn and test partitions used during 

the model building whereas the SCORE GO command tells SPM to start the scoring process.  
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After you type the SCORE GO command and press the ENTER key you will see the Score results menu: 

 

Notice that you can view model statistics for both the learn and test sample partitions (red and 

blue rectangles in the picture, respectively). The predictions are stored in the Output Scores 

file path. Navigate to this location and open this file. Here is a snapshot of the file: 

 

CASEID: an ID variable added by SPM (it is the row number in the original dataset). 

SAMPLE: specifies if the record was in the LEARN sample or the TEST sample. 

RESPONSE: ½ log odds of Y2=1 (remember Y2 is a binary target variable with two values: 1 or -1). 

PROB_NEG_ONE: probability of a -1(remember we set labels for the target variable in the previous 

steps; see Set Class Names for the Target Variable section for more detail). 

PROB_ONE: probability of a 1(remember we set labels for the target variable in the previous steps; see 

Set Class Names for the Target Variable section for more detail). 

PREDICTION: predicted class based on the probability (the default cutoff probability is 50% which is the 

same as predicting the class that has the larger predicted probability in the case of binary targets). 

CORRECT: if the predicted class PREDICTION is the same as the value for the original target variable 

Y2, then CORRECT = 1 (i.e. the prediction was correct). If the predicted class PREDICTION differs from 

the value for the original target variable then CORRECT =0 (i.e. the prediction was incorrect).  

Y2: the original target variable. 
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Generating Predictions Using a Saved Model  

Previously saved models can be used to generate predictions for other datasets. As an example, you may 

build a model, and three months later, you may need to use the model to generate predictions for an entirely 

new dataset. In this example, we will use a previously saved classification model used to predict the target 

variable Y2 (see the Example: Building a Classification/Logistic Binary Model section for more information). 

The dataset we are going to generate predictions for is called “sample_unlabeled.csv”:  

 

Notice that there is not a column for the target variable Y2, so we are going to use our model to generate 

predicted probabilities and predicted classes for all 6 records. There are two primary steps involved in 

scoring data using a saved model: 

1. Save the model so it can be used later 

2. Score the data using the saved model 

The steps involved in saving a model are outlined in the Saving TreeNet Models: Grove File section. Please 

see this section for more detail. To score data using a saved model: 

1. Open the saved model in SPM by clicking the “Open Grove” shortcut button in the red rectangle 

below (remember that a “grove” is a just a file that stores models constructed in SPM; see the 

Saving TreeNet Models: Grove File section for more information) 
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Navigate to the saved model (the file extension is .grv), click the file name (orange rectangle 

below) and then click the Open button (green rectangle below) to open the saved model in SPM:  

 

 

Double click the file name to open the model in SPM and you will see something similar to the 

following picture. Notice that this is the output window that you see after you construct a TreeNet 

model.  

 

2. To generate predictions for a dataset, click the Score button in the picture above. 
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3. Specify the new file that you want to score by clicking the Open Data File… button and navigating 

to the desired file. Once you find the file, click the file name (orange rectangle below) and then 

click the Open button (you can also just double click the file name).  
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4. Specify the save location for the model predictions by clicking the Save Score As… checkbox. 

Also, click the Save all model values checkbox. If you wish to save the predictor variables 

along with the predictions then click Save all variables on input dataset to score dataset. 

Specify the “ID” variable to be an identification variable by clicking ID (purple rectangle below) 

and then clicking the Select button for the ID variable section on the right. After you click the 

Select button you will see the ID variable name appear in this section. Click the Score button to 

generate predictions for the sampled_unlabeled.csv dataset.   
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5. After the scoring process is complete, you will see something like the following picture. Notice that 

the file path for the dataset with the predictions is given by the Output Scores file path: 

 

6. Here is the file specified in the Output Scores file path: 

 

CASEID: an ID variable created by SPM. The value is the row number (not including the header row). 

RESPONSE: the predicted ½ log-odds of the event. 

PROB_NEG_ONE: the predicted probability of the class “Neg One” (remember we set labels for the 

target variable in the previous steps; see Set Class Names for the Target Variable section for more 

detail). 

PROB_ONE: the predicted probability of the class “One” (remember we set labels for the target variable 

in the previous steps; see Set Class Names for the Target Variable section for more detail). 

PREDICTION: the predicted class which in this case is either a 1 or -1. The default cutoff probability for 

class prediction is .5 (this is the same as selecting the predicted class to be the class with the larger 

predicted probability). 
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Rare TreeNet Commands 

Most of the engine specific control parameters occur on the TREENET command. Type HELP TREENET 

in the command line to see a detailed description of every available option. You can also consult 

extensive command reference. 

Here we point out some interesting features available only through the command line and otherwise not 

directly accessible through the Model Setup window. 

 TREENET FULLREPORT = <YES|NO> 

Only applies to classification models, turns on additional extensive reporting like confusion matrices, 

detailed variable importance tables, etc. 

 TREENET GB = <n> 

Defines the number of bins in gains charts in the text output. 
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Using Logistic Calibration on TreeNet Results 

TreeNet is a powerful predictive modeling engine to optimize logistic log-likelihood on binary classification 

tasks. However, best TreeNet practices usually require very small learning rates and large number of 

trees to reduce the problem of overfitting which is a known issue for any boosting methodology. This may 

cause the predicted probabilities coming out of an optimal TreeNet model to have a reduced range, this is 

especially so when area under ROC curve is used for optimal model selection because the criterion itself 

is invariant under monotone transformations of predicted response, including scale transformation. 

To make the proper adjustment to the predicted probability we offer the following approach: 

1. Build a binary logistic TreeNet model using either Log-likelihood or ROC-area optimality 

criterion. 

2. Apply this model to the test sample, the output prediction (called RESPONSE) is the half-log-

odds of the class in focus. 

3. Use the RESPONSE as the sole predictor to build a univariate logistic regression on the test 

sample. 

4. The resulting INTERCEPT and SLOPE coefficients are the final adjustments. 

The following command requests test-based calibration of TreeNet raw response for binary logit.  

 TREENET CALIB=YES 

The calibrated intercept I and slope S are printed in a separate table for each model size. The calibrated 

TreeNet response is then I + S*(raw response). The calibration option is a command line only feature. To 

use this feature follow these steps: 

1. Setup your TreeNet model in the GUI as described in the section above (skip this step if using the 

command line only). Click the Continue button to simultaneously exit the model setup and save 

the model settings:  
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2. Now we will tell TreeNet to use logistic calibration. This feature is a command line only feature, so 

we will first navigate to the command line. To do this click Window > Classic Output Window and 

the Classic Output Window will appear. 

 

3. Type TREENET CALIB = YES in the command line (blue rectangle below) and press ENTER to 

submit the command to SPM 

 

4. Type TREENET GO in the command line and press ENTER to run the TreeNet model. Alternatively, 

click the Model Setup shortcut button (red rectangle below) to go back to TreeNet engine setup. 

 

Clicking this button yields the model setup. To run the model with the logistic calibration, click the 

START button 
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Viewing the Logistic Calibration Results 

The results of the logistic calibration are contained in the Classic Output Window. 

1. Navigate to the Classic Output Window by clicking Window > Classic Output Window. The Classic 

Output Window will appear: 

 

2. Click the TreeNet Results link on the left and scroll down to the “LOGIT CALIBRATION” section 

(green rectangle below) 

 

Interpretation: the intercept and slope coefficients are provided for each TreeNet iteration (remember the 

number of iterations =  number of trees because each iteration corresponds to fitting a CART tree to the 

generalized residuals; in SPM we use “number of trees” instead of “number of iterations”). 

• N-Trees: number of trees 

• Intercept: coefficient for the intercept term in the logit model (this is the “I” in the equation 

provided above) 

• Slope: coefficient for the raw response term (this is the “S” in the equation provided above) 

 

Ideally, the value for the intercept would be 0 and the value for the slope would be 2 because the only 

predictor variable is the ½ log odds of the event and a logit model tries to model the log odds of the event. 

The actual calibration values indicate the lack of calibration of the original raw RESPONSE.  
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Missing Value Handling 

TreeNet handles missing values by generating what could be thought of as a 3-way split when using a 

variable with missing values to grow a tree. First, the records with missing values are moved to their own 

child node, and the records with good data for the variable move to the other child node. TreeNet is then 

free to induce a split on the variable using just data with good values. 

In order to illustrate this concept, translate your model and view the beginning of the code: 

 

The statements in bold check whether the value is missing (<= .z) before continuing down the tree. In the 

root node, if N_INQUIRIES is missing, the record is sent to node 5. If not, the condition N_INQUIRIES < 

4.5 is checked. 

 


